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An Introduction to Crystal Structures

In the last decade of the twentieth century, research into solid state chemistry expanded
very rapidly, fuelled partly by the dramatic discovery of ‘high temperature’ ceramic
oxide superconductors in 1986, and by the search for new and better materials. We have
seen immense strides in the development and understanding of nano-technology, micro-
and meso-porous solids, fuel cells, and the giant magnetoresistance effect, to mention but
a few areas. It would be impossible to cover all of the recent developments in detail in a
text such as this, but we will endeavour to give you a flavour of the excitement that some
of the research has engendered, and perhaps more importantly the background with
which to understand these developments and those which are yet to come.

All substances, except helium, if cooled sufficiently form a solid phase; the vast
majority form one or more crystalline phases, where the atoms, molecules, or ions pack
together to form a regular repeating array. This book is concerned mostly with the
structures of metals, ionic solids, and extended covalent structures; structures which do
not contain discrete molecules as such, but which comprise extended arrays of atoms or
ions. We look at the structure and bonding in these solids, how the properties of a solid
depend on its structure, and how the properties can be modified by changes to the
structure.

1.1 INTRODUCTION

To understand the solid state, we need to have some insight into the structure of simple
crystals and the forces that hold them together, so it is here that we start this book.
Crystal structures are usually determined by the technique of X-ray crystallography.
This technique relies on the fact that the distances between atoms in crystals are of the
same order of magnitude as the wavelength of X-rays (of the order of 1 A or 100 pm): a
crystal thus acts as a three-dimensional diffraction grating to a beam of X-rays. The
resulting diffraction pattern can be interpreted to give the internal positions of the atoms
in the crystal very precisely, thus defining interatomic distances and angles. (Some of the
principles underlying this technique are discussed in Chapter 2, where we review the
physical methods available for characterizing solids.) Most of the structures discussed in
this book will have been determined in this way.

The structures of many inorganic crystal structures can be discussed in terms of the
simple packing of spheres, so we will consider this first, before moving on to the more
formal classification of crystals.
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1.2 CLOSE-PACKING

Think for the moment of an atom as a small hard sphere. Figure 1.1 shows two possible
arrangements for a layer of such identical atoms. On squeezing the square layer in Figure
1.1 (a), the spheres would move to the positions in Figure 1.1 (b) so that the layer takes
up less space. The layer in Figure 1.1 (b) (layer A) is called close-packed. To build up a
close-packed structure in three-dimensions we must now add a second layer (layer B).
The spheres of the second layer sit in half of the hollows of the first layer: these have
been marked with dots and crosses. The layer B in Figure 1.2 sits over the hollows
marked with a cross (although it makes no difference which type we chose). When we
add a third layer, there are two possible positions where it can go. First, it could go
directly over layer A, in the unmarked hollows: if we then repeated this stacking
sequence we would build up the layers ABABABA ...and so on. This is known as
hexagonal close-packing (hcp) (Figure 1.3(a)). In this structure, the hollows marked
with a dot are never occupied by spheres, leaving very small channels through the layers
(Figure 1.3(b)).

Second, the third layer could be positioned over those hollows marked with a dot. This
third layer, which we could label C, would not be directly over either A or B, and the
stacking sequence when repeated would be ABC ABC AB...and so on. This is known as
cubic close-packing (ccp) (Figure 1.4). (The names hexagonal and cubic for these
structures arise from the resulting symmetry of the structure—this will be discussed more
fully later on.)

Close-packing represents the most efficient use of space when packing identical
spheres—the spheres occupy 74% of the volume: the packing efficiency is said to be
74%. Each sphere in the structure is surrounded by twelve equidistant neighbours—six in
the same layer, three in the layer above and three in the layer below: the coordination
number of an atom in a close-packed structure is thus 12.

Another important feature of close-packed structures is the shape and number of the
small amounts of space trapped in between the spheres. Two different types of space are
contained within a close-packed structure: the first we will consider is called an
octahedral hole. Figure 1.5(a) shows two close-packed layers again but now with the
octahedral holes shaded. Six spheres surround each of these holes: three in layer A and
three in layer B. The centres of these spheres lay at the corners
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(a)

(b)

FIGURE 1.1 (a) A square array of
spheres; (b) a close-packed layer of
spheres.
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FIGURE 1.3 (a) Three Acp layers
showing the ABAB.. .stacking
sequence; (b) three hcp layers showing
the narrow channels through the layers.

of an octahedron, hence the name (Figure 1.5(b)). If n spheres are in the array, then there
are also n octahedral holes.

Similarly, Figure 1.6(a) shows two close-packed layers, now with the second type of
space, tetrahedral holes, shaded. Four spheres surround each of these holes with centres
at the corners of a tetrahedron (Figure 1.6(b)). If n spheres are in the array, then there are
2ntetrahedral holes.

The octahedral holes in a close-packed structure are much bigger than the tetrahedral
holes—they are surrounded by six atoms instead of four. It is a matter of simple geometry
to calculate that the radius of a sphere that will just fit in an

FIGURE 1.4 Three ccp layers.
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FIGURE 1.5 (a) Two layers of close-
packed spheres with the enclosed
octahedral holes shaded; (b) a
computer representation of an
octahedral hole.

octahedral hole in a close-packed array of spheres of radius ris 0.414r. For a tetrahedral
hole, the radius is 0.225r (Figure 1.7).

Of course, innumerable stacking sequences are possible when repeating close-packed
layers; however, the hexagonal close-packed and cubic close-packed are those of
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maximum simplicity and are most commonly encountered in the crystal structures of the
noble gases and of the metallic elements. Only two other stacking sequences are found in
perfect crystals of the elements: an ABAC repeat in La, Pr, Nd, and Am, and a nine-layer
repeat ABACACBCB in Sm.

FIGURE 1.6 (a) Two layers of close-
packed spheres with the tetrahedral
holes shaded; (b) a computer
representation of a tetrahedral hole.
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FIGURE 1.7 (a) A sphere of radius
0.414r fitting into an octahedral hole;
(b) a sphere of radius 0.225 fitting
into a tetrahedral hole.

1.3 BODY-CENTRED AND PRIMITIVE STRUCTURES

Some metals do not adopt a close-packed structure but have a slightly less efficient
packing method: this is the body-centred cubic structure (bcc), shown in Figure 1.8.
(Unlike the previous diagrams, the positions of the atoms are now represented here—and
in subsequent diagrams—by small spheres which do not touch: this is merely a device to
open up the structure and allow it to be seen more clearly—the whole question of atom
and ion size is discussed in Section 1.6.4.) In this structure an atom in the middle of a
cube is surrounded by eight identical and equidistant atoms at the corners of the cube—
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the coordination number has dropped from twelve to eight and the packing efficiency is
now 68%, compared with 74% for close-packing.

The simplest of the cubic structures is the primitive cubic structure. This is built by
placing square layers like the one shown in Figure 1.1 (a), directly on top of one another.
Figure 1.9(a) illustrates this, and you can see in Figure 1.9(b) that each atom sits at the
corner of a cube. The coordination number of an atom in this structure is six. The
majority of metals have one of the three basic structures: Acp, ccp, or bce. Polonium
alone adopts the primitive structure. The distribution of the packing types among the
most stable forms of the metals at 298 K is shown in Figure 1.10. As we noted earlier, a
very few metals have a mixed hcp/ccp structure of a more complex type. The structures
of the actinides tend to be rather complex and are not included.

FIGURE 1.8 Body-centred cubic
array.



Solid state chemistry 10

FIGURE 1.9 (a) Two layers of a
primitive cubic array; (b) a cube of
atoms from this array.
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FIGURE 1.10 Occurrence of packing
types among the metals.
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1.4 SYMMETRY

Before we take the discussion of crystalline structures any further, we will look at the
symmetry displayed by structures. The concept of symmetry is an extremely useful one
when it comes to describing the shapes of both individual molecules and regular
repeating structures, as it provides a way of describing similar features in different
structures so that they become unifying features. The symmetry of objects in everyday
life is something that we tend to take for granted and recognize easily without having to
think about it. Take some simple examples illustrated in Figure 1.11. If you imagine a
mirror dividing the spoon in half along the plane indicated, then you can see that
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(d)

FIGURE 1.11 Common objects
displaying symmetry: (a) a spoon, (b) a
paintbrush, (c) a snowflake, and (d) a
50p coin.

one-half of the spoon is a mirror image or reflection of the other. Similarly, with the
paintbrush, only now two mirror planes at right angles divide it.

Objects can also possess rotational symmetry. In Figure 1.11(c) imagine an axle
passing through the centre of the snowflake; in the same way as a wheel rotates about an
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|
axle, if the snowflake is rotated through s of a revolution, then the new position is

|
indistinguishable from the old. Similarly, in Figure 1.11(d), rotating the 50p coin by 7 of
a revolution brings us to the same position as we started (ignoring the pattern on the
surface). The symmetry possessed by a single object that describes the repetition of
identical parts of the object is known as its point symmetry.

Actions such as rotating a molecule are called symmetry operations, and the
rotational axes and mirror planes possessed by objects are examples of symmetry
elements.

Two forms of symmetry notation are commonly used. As chemists, you will come
across both. The Schoenflies notation is useful for describing the point symmetry of
individual molecules and is used by spectroscopists. The Hermann-Mauguin notation
can be used to describe the point symmetry of individual molecules but in addition can
also describe the relationship of different molecules to one another in space—their so-
called space-symmetry—and so is the form most commonly met in crystallography and
the solid state. We give here the Schoenflies notation in parentheses after the Hermann-
Mauguin notation.

1.4.1 AXES OF SYMMETRY

As discussed previously for the snowflake and the 50p coin, molecules and crystals can
also possess rotational symmetry. Figure 1.12 illustrates this for several molecules.

In Figure 1.12(a) the rotational axis is shown as a vertical line through the O atom in
OF,; rotation about this line by 180° in the direction of the arrow, produces an identical
looking molecule. The line about which the molecule rotates is called an axis of
symmetry, and in this case, it is a twofold axis because we have to perform the operation
twice to return the molecule to its starting position.

Axes of symmetry are denoted by the symbol n (C,), where n is the order of the axis.
Therefore, the rotational axis of the OF, molecule is 2 (C,).

The BF3; molecule in Figure 1.12(b) possesses a threefold axis of symmetry, 3 (Cs),

because each é'of a revolution leaves the molecule looking the same, and three turns
brings the molecule back to its starting position. In the same way, the XeF, molecule in
(c) has a fourfold axis, 4 (C,), and four quarter turns are necessary to bring it back to the
beginning. All linear molecules have an o« (C,) axis, which is illustrated for the BeF,
molecule in (d); however small a fraction of a circle it is rotated through, it always looks
identical. The smallest rotation possible is 1/c0, and so the axis is an infinite-order axis of
symimetry.

1.4.2 PLANES OF SYMMETRY

Mirror planes occur in isolated molecules and in crystals, such that everything on one
side of the plane is a mirror image of the other. In a structure, such a mirror
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FIGURE 1.12 Axes of symmetry in
molecules: (a) twofold axis in OF,, (b)
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threefold axis in BF3, (c) fourfold axis
in XeF, and (d) oo-fold axis in BeF,.
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FIGURE 1.13 Planes of symmetry in
molecules: (a) planes of symmetry in
OF,, (b) planes of symmetry in BFs,
and (c) planes of symmetry in XeF,.

plane is known as a plane of symmetry and is given the symbol m (). Molecules may
possess one or more planes of symmetry, and the diagrams in Figure 1.13 illustrate some
examples. The planar OF, molecule has two planes of symmetry (Figure 1.13(a)), one is
the plane of the molecule, and the other is at right angles to this. For all planar molecules,
the plane of the molecule is a plane of symmetry. The diagrams for BF; and XeF, (also

planar molecules) only show the planes of symmetry which are perpendicular to the plane
of the molecule.

1.4.3 INVERSION

The third symmetry operation that we show in this section is called inversion through a

centre of symmetry and is given the symbol 1(i). In this operation you have to imagine a
line drawn from any atom in the molecule, through the centre of symmetry and then
continued for the same distance the other side; if for every atom, this meets with an
identical atom on the other side, then the molecule has a centre of symmetry. Of the

molecules in Figure 1.12, XeF, and BeF, both have a centre of symmetry, and BF; and
OF, do not.
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1.4.4 INVERSION AXES AND IMPROPER SYMMETRY AXES

The final symmetry element is described differently by the two systems, although both
descriptions use a combination of the symmetry elements described previously. The
Hermann-Mauguin inversion axis is a combination of rotation and inversion and is given
the symbol M -The symmetry element consists of a rotation by 1/n of a revolution about

the axis, followed by inversion through the centre of symmetry. An example of an 4
inversion axis is shown in Figure 1.14 for a tetrahedral molecule such as CF,. The
molecule is shown inside a cube as this makes it easier to see the

5.
i

FIGURE 1.14 The 4(S,) inversion
(improper) axis of symmetry in the
tetrahedral CF, molecule.
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symmetry elements. Rotation about the axis through 90° takes F; to the position shown as
a dotted F; inversion through the centre then takes this atom to the F; position.

The equivalent symmetry element in the Schoenflies notation is the improper axis of
symmetry, S,, which is a combination of rotation and reflection. The symmetry element
consists of a rotation by 1/n of a revolution about the axis, followed by reflection through
a plane at right angles to the axis. Figure 1.14 thus presents an S, axis, where the F,
rotates to the dotted position and then reflects to F,. The equivalent inversion axes and
improper symmetry axes for the two systems are shown in Table 1.1.

1.4.5 SYMMETRY IN CRYSTALS

The discussion so far has only shown the symmetry elements that belong to individual
molecules. However, in the solid state, we are interested in regular arrays of

TABLE 1.1 Equivalent symmetry elements in
the Schoenflies and Hermann-Mauguin Systems

Schoenflies Hermann-Mauguin
Si=m 2=m
Sp=i | =i
S3 f
S4 4
Se 3

atoms, ions, and molecules, and they too are related by these same symmetry elements.
Figure 1.15 gives examples (not real) of how molecules could be arranged in a crystal. In
(@), two OF, molecules are related to one another by a plane of symmetry; in (b), three
OF; molecules are related to one another by a threefold axis of symmetry; in (c), two OF,
molecules are related by a centre of inversion. Notice that in both (b) and (c), the
molecules are related in space by a symmetry element that they themselves do not
possess, this is said to be their site symmetry.
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FIGURE 1.15 Symmetry in solids: (a)
two OF; molecules related by a plane
of symmetry, (b) three OF, molecules
related by a threefold axis of
symmetry, and (c) two OF, molecules
related by a centre of inversion.

1.5 LATTICES AND UNIT CELLS

Crystals are regular shaped solid particles with flat shiny faces. It was first noted by
Robert Hooke in 1664 that the regularity of their external appearance is a reflection of a
high degree of internal order. Crystals of the same substance, however, vary in shape
considerably. Steno observed in 1671 that this is not because their internal structure
varies but because some faces develop more than others do. The angle between similar
faces on different crystals of the same substance is always identical. The constancy of the
interfacial angles reflects the internal order within the crystals. Each crystal is derived
from a basic ‘building block’ that continuously repeats, in all directions, in a perfectly
regular way. This building block is known as the unit cell.
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To talk about and compare the many thousands of crystal structures that are known,
there has to be a way of defining and categorizing the structures. This is achieved by
defining the shape and symmetry of each unit cell as well as its size and the positions of
the atoms within it.

1.5.1 LATTICES

The simplest regular array is a line of evenly spaced objects, such as those depicted by
the commas in Figure 1.16(a). There is a dot at the same place in each object: if we now
remove the objects leaving the dots, we have a line of equally spaced dots, spacing a,
(Figure 1.16(b)). The line of dots is called the lattice, and each lattice point (dot) must
have identical surroundings. This is the only example of a one-dimensional lattice and it
can vary only in the spacing a. Five two-dimensional lattices are possible, and examples
of these can be seen every day in wallpapers and tiling.

1.5.2 ONE- AND TWO-DIMENSIONAL UNIT CELLS

The unit cell for the one-dimensional lattice in Figure 1.16(a) lies between the two
vertical lines. If we took this unit cell and repeated it over again, we would reproduce the
original array. Notice that it does not matter where in the structure we place the

FIGURE 1.16 A one-dimensional
lattice (a,b) and the choice of unit cells

(c).
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FIGURE 1.17 Choice of unit cell in a
square two-dimensional lattice.

lattice points as long as they each have identical surroundings. In Figure 1.16(c), we have
moved the lattice points and the unit cell, but repeating this unit cell will still give the
same array—we have simply moved the origin of the unit cell. There is never one unique
unit cell that is ‘correct.” Many can always be chosen, and the choice depends both on
convenience and convention. This is equally true in two and three dimensions.

The unit cells for the two-dimensional lattices are parallelograms with their corners at
equivalent positions in the array (i.e., the corners of a unit cell are lattice points). In
Figure 1.17, we show a square array with several different unit cells depicted. All of
these, if repeated, would reproduce the array: it is conventional to choose the smallest cell
that fully represents the symmetry of the structure. Both unit cells (1a) and (1b) are the
same size but clearly (la) shows that it is a square array, and this would be the
conventional choice. Figure 1.18 demonstrates the same principles but for a centred
rectangular array, where (a) would be the conventional choice because it includes
information on the centring; the smaller unit cell (b) loses this information. It is always
possible to define a non-centred oblique unit cell, but doing so may lose information
about the symmetry of the lattice.

Unit cells, such as (1a) and (1b) in Figure 1.17 and (b) in Figure 1.18, have a lattice
point at each corner. However, they each contain one lattice point because four adjacent
unit cells share each lattice point. They are known as primitive unit cells and are given
the symbol P. The unit cell marked (a) in Figure 1.18 contains
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FIGURE 1.18 Choice of unit cell in a
centred-rectangular lattice.
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FIGURE 1.19 An a glide
perpendicular to D.

two lattice points—one from the shared four corners and one totally enclosed within the
cell. This cell is said to be centred and is given the symbol C.

1.5.3 TRANSLATIONS SYMMETRY ELEMENTS

Section 1.4 introduced the idea of symmetry, both in individual molecules and for
extended arrays of molecules, such as are found in crystals. Before going on to discuss
three-dimensional lattices and unit cells, it is important to introduce two more symmetry
elements; these elements involve translation and are only found in the solid state.

The glide plane combines translation with reflection. Figure 1.19 is an example of
this symmetry element. The diagram shows part of a repeating three-dimensional
structure projected on to the plane of the page; the circle represents a molecule or ion in
the structure and there is distance a between identical positions in the structure. The +
sign next to the circle indicates that the molecule lies above the plane of the page in the z
direction. The plane of symmetry is in the xz plane perpendicular to the paper, and is
indicated by the dashed line. The symmetry element consists of reflection through this
plane of symmetry, followed by translation. In this case, the translation can be either in
the x or in the z direction (or along a diagonal), and the translation distance is half of the



Solid state chemistry 22

repeat distance in that direction. In the example illustrated, the translation takes place in
the x direction. The repeat distance between identical molecules is a, and so the
translation is by a/2, and the symmetry element is called an a glide. You will notice two
things about the molecule generated by this symmetry element: first, it still has a + sign
against it, because the reflection in the plane leaves the z coordinate the same and second,
it now has a comma on it. Some molecules when they are reflected through a plane of
symmetry are enantiomorphic, which means that they are not superimposable on their
mirror image: the presence of the comma indicates that this molecule could be an
enantiomorph.

The screw axis combines translation with rotation. Screw axes have the general
symbol n; where n1is the rotational order of the axis (i.e., twofold, threefold, etc.), and the
translation distance is given by the ratio i/n. Figure 1.20 illustrates a 2; screw axis. In this
example, the screw axis lies along zand so the translation must be in

_.,_.
--1--..'!
c
- =

2, Screw
axis

Q. O

FIGURE 1.20 A 2, screw axis along z

the zdirection, by ¢/2, where c is the repeat distance in the z direction. Notice that in this
case the molecule starts above the plane of the paper (indicated by the + sign) but the
effect of a twofold rotation is to take it below the plane of the paper (- sign). Figure 1.21
probably illustrates this more clearly, and shows the different effects that rotational and
screw axes of the same order have on a repeating structure. Rotational and screw axes
produce objects that are superimposable on the original. All other symmetry elements—
glide plane, mirror plane, inversion centre, and inversion axis—produce a mirror image
of the original.

1.5.4 THREE-DIMENSIONAL UNIT CELLS

The unit cell of a three-dimensional lattice is a parallelepiped defined by three distances
a, b, and ¢, and three angles «, 8, and y, as shown in Figure 1.22. Because the unit cells
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are the basic building blocks of the crystals, they must be space-filling (i.e., they must

pack together to fill all space). All the possible unit cell shapes that can fulfill this

criterion are illustrated in Figure 1.23 and their specifications are listed in Table

1.2.These are known as the seven crystal systems or classes.These unit cell shapes are

determined by minimum symmetry requirements which are also detailed in Table 1.2.
The three-dimensional unit cell includes four different types (see Figure 1.24):

1. The primitive unit cell—symbol P—has a lattice point at each corner.

2. The body-centred unit cell—symbol I—has a lattice point at each corner and one at
the centre of the cell.

3. The face-centred unit cell—symbol F—has a lattice point at each corner and one in
the centre of each face.

4. The face-centred unit cell—symbol A, B, or C—has a lattice point at each corner, and
one in the centres of one pair of opposite faces (e.g., an A-centred cell has lattice
points in the centres of the bc faces).
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FIGURE 1.21 Comparison of the
effects of twofold and threefold
rotation axes and screw axes.
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When these four types of lattice are combined with the 7 possible unit cell shapes, 14
permissible Bravais lattices (Table 1.3) are produced. (It is not possible to combine
some of the shapes and lattice types and retain the symmetry requirements listed in Table
1.2. For instance, it is not possible to have an A-centred, cubic, unit cell; if only two of
the six faces are centred, the unit cell necessarily loses its cubic symmetry.)

F.

|
L
F
T

FIGURE 1.22 Definition of axes, unit
cell dimensions, and angles for a
general unit cell.
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FIGURE 1.23 (a) The unit cells of the
seven crystal systems, (b) Assemblies

of cubic unit cells in one, two, and
three dimensions.
The symmetry of a crystal is a point group taken from a point at the centre of a perfect

crystal. Only certain point groups are possible because of the constraint made by the fact
that unit cells must be able to stack exactly with no spaces—so only one-, two-, three-,
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four-, and sixfold axes are possible. Combining this with planes of symmetry and centres
of symmetry, we find 32 point groups that can describe the shapes of perfect crystals.

If we combine the 32 crystal point groups with the 14 Bravais lattices we find 230
three-dimensional space groups that crystal structures can adopt (i.e., 230

TABLE 1.2 The seven crystal systems

System Unit cell Minimum symmetry requirements
Triclinic af#y290° None
arbrc
Monoclinic a=y=90°  One twofold axis or one symmetry plane
p#90°
arbrc
Orthorhombic a=f=y=90° Any combination of three mutually perpendicular twofold
arbtc axes or planes of symmetry
Trigonal/rhombohedral a=f=y#90° One threefold axis
a=b=c
Hexagonal a=p=90°  One sixfold axis or one sixfold improper axis
y=120°
a=b+c
Tetragonal a=p=y=90° One fourfold axis or one fourfold improper axis
a=b+c
Cubic a=F=y=90° Four threefold axes at 109° 28' to each other
a=b=c

different space-filling patterns)! These are all documented in the International Tables for
Crystallography (see Bibliography at end of the book).

It is important not to lose sight of the fact that the lattice points represent equivalent
positions in a crystal structure and not atoms. In a real crystal, an atom, a complex ion, a
molecule, or even a group of molecules could occupy a lattice point. The lattice points
are used to simplify the repeating patterns within a structure, but they tell us nothing of
the chemistry or bonding within the crystal—for that we have to include the atomic
positions: this we will do later in the chapter when we look at some real structures.

It is instructive to note how much of a structure these various types of unit cell
represent. We noted a difference between the centred and primitive two-dimensional unit
cell where the centred cell contains two lattice points whereas the primitive cell contains
only one. We can work out similar occupancies for the three-dimensional case. The
number of unit cells sharing a particular molecule depends on its site. A corner site is
shared by eight unit cells, an edge site by four, a face site by two and a molecule at the
body-centre is not shared by any other unit cell (Figure 1.25). Using these figures, we can
work out the number of molecules in each of the four types of cell in Figure 1.24,
assuming that one molecule is occupying each lattice point. The results are listed in Table
1.4.
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FIGURE 1.24 Primitive (a), body-
centred (b), face-centred (c), and face-
centred (A, B, or C) (d), unit cells,

1.5.5 MILLER INDICES

The faces of crystals, both when they grow and when they are formed by cleavage, tend
to be parallel either to the sides of the unit cell or to planes in the crystal that contain a
high density of atoms. It is useful to be able to refer to both crystal faces and to the planes
in the crystal in some way—to give them a name—and this is usually done by using
Miller indices.

First, we will describe how Miller indices are derived for lines in two-dimensional
nets, and then move on to look at planes in three-dimensional lattices. Figure 1.26 is a
rectangular net with several sets of lines, and a unit cell is marked on each set with the
origin of each in the bottom left-hand corner corresponding to the directions of the x and
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yaxes. A set of parallel lines is defined by two indices, /1 and &, where A and k are the

number of parts into which a and b, the unit cell edges, are divided by the lines. Thus the
a b

indices of a line hk are defined so that the line intercepts a at fland b at k. Start by

finding a line next to the one passing through the origin, In the set of lines marked A, the
line next to the one passing through the origin

=

Qushy

il

TABLE 1.3 Bravais lattices

Crystal system Lattice types

Cubic P,IF
Tetragonal P 1
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Orthorhombic P,C,LLF
Hexagonal P
Trigonal (Rhombohedral) P/R?
Monoclinic P.C
Triclinic P

“The primitive description of the thombohedral lattice is normally given the symbol R.

TABLE 1.4 Number of molecules in four types

of cells
Name Symbol Number of molecules in unit cell
Primitive P 1
Body-centred | 2
Face-centred AorBorC 2
All face-centred F 4

leaves a undivided but divides b into two; both intercepts lie on the positive side of the
origin, therefore, in this case, the indices of the set of lines Ak are 12 (referred to as the
‘one-two’ set). If the set of lines lies parallel to one of the axes then there is no intercept
and the index becomes zero. If the intercepted cell edge lies on the negative side of the

origin, then the index is written with a bar on the top (e.g.,2), known as ‘bar-two’. Notice
that if we had selected the line on the other side of the origin in A we would have indexed

the lines as the { Z:ino difference exists between the two pairs of indices and always the

hk and the # k lines are the same set of lines. Try Question 5 for more examples. Notice
also, in Figure 1.26, that the lines with the lower indices are more widely spaced.
The Miller indices for planes in three-dimensional lattices are given by hkl/, where /is
now the index for the zaxis. The principles are the same. Thus a plane is indexed hk/
a b C

when it makes intercepts # = & ‘and ! with the unit cell edges a, b, and c. Figure 1.27
depicts some cubic lattices with various planes shaded. The positive directions of the axes
are marked, and these are orientated to conform to
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(b)

FIGURE 1.25 Unit cells showing a
molecule on (a) a face, (b) an edge,
and (c) a corner.
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FIGURE 1.26 A rectangular net
showing five sets of lines, A-E, with
unit cells marked.
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the conventional right-hand rule as illustrated in Figure 1.28. In Figure 1.27(a), the
shaded planes lie parallel to y and z but leave the unit cell edge a undivided; the Miller

indices of these planes are thus /00. Again, take note that the A4/ and hkl planes are the
same.

1.5.6 INTERPLANAR SPACINGS

It is sometimes useful to be able to calculate the perpendicular distance dj; between

parallel planes (Miller indices Akl). When the axes are at right angles to one another

(orthogonal) the geometry is simple and for an orthorhombic system where a#b +#c and
a=p=y=90°, this gives:

. S & ’

a b ¢

e

ik

Other relationships are summarized in Table 1.5.

1.5.7 PACKING DIAGRAMS

Drawing structures in three-dimensions is not easy and so crystal structures are often
represented by two-dimensional plans or projections of the unit cell contents—in much
the same way as an architect makes building plans. These projections are called packing
diagrams because they are particularly useful in molecular structures
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(a)

(d)

FIGURE 1.27 (a)-(c) Planes in a face-
centred cubic lattice, (d) Planes in a
body-centred cubic lattice (two unit
cells are shown).
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FIGURE 1.28 The right-handed rule
for labelling axes.

for showing how the molecules pack together in the crystal, and thus the intermolecular
interactions.

The position of an atom or ion in a unit cell is described by its fractional coordinates;
these are simply the coordinates based on the unit cell axes (known as the
crystallographic axes), but expressed as fractions of the unit cell lengths. It has the
simplicity of a universal system which enables unit cell positions to be compared from
structure to structure regardless of variation in unit cell size.

TABLE 1.5 d-spacings in different crystal

systems
Crystal system dyx, as a function of Miller indices and lattice parameters
Cubic | K
F‘ - (’.?E
Tetragonal l JR &
E:_ = _”:_ - T {,’:
Orthorhombic 1 W 12 IE
— = —— 4 — +
d a b

Hexagonal

i he 4+ hk 4+ k° . I
o 3 a’ o
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FIGURE 1.29 Packing diagram for a
body-centred unit cell.

To take a simple example, in a cubic unit cell with a=1000 pm, an atom with an x

r_o2W g

coordinate of 500 pm has a fractional coordinate in the x direction of @ 1000

v
Similarly, in the y and z directions, the fractional coordinates are given by #and
respectively.

A packing diagram is shown in Figure 1.29 for the body-centred unit cell of Figure
1.8. The projection is shown on the yx plane (i.e., we are looking at the unit cell straight
down the zaxis). The zfractional coordinate of any atoms/ions lying in the top or bottom
face of the unit cell will be 0 or 1 (depending on where you take the origin) and it is
conventional for this not to be marked on the diagram. Any z-coordinate that is not 0 or 1
is marked on the diagram in a convenient place. There is an opportunity to practice
constructing these types of diagram in the questions at the end of the chapter.

¢

1.6 CRYSTALLINE SOLIDS

We start this section by looking at the structures of some simple ionic solids. Ions tend to
be formed by the elements in the Groups at the far left and far right of the Periodic Table.
Thus, we expect the metals in Groups I and II to form cations and the nonmetals of
Groups VI(16) and VII(17) and nitrogen to form anions, because by doing so they are
able to achieve a stable noble gas configuration. Cations can also be formed by some of
the Group I11(13) elements, such as aluminium, AI**, by some of the low oxidation state
transition metals and even occasionally by the high atomic number elements in Group
TV(14), such as tin and lead, giving Sn** and Pb*. Each successive ionization becomes



