
Generated using version 3.2 of the official AMS LATEX template

Fluctuation-Dissipation Supplemented by Nonlinearity:1

A Climate-Dependent Sub-Grid-Scale Parameterization in2

Low-Order Climate Models3
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ABSTRACT6

Climate system models use a multitude of parameterization schemes for small-scale pro-7

cesses. These should respond to externally forced climate variability in an appropriate man-8

ner so as to reflect the response of the parameterized process to a changing climate. The9

most attractive route to achieve such a behavior would certainly be provided by theoretical10

understanding sufficiently deep to enable the à-priori design of climate-sensitive parameteri-11

zation schemes. An alternative path might, however, be helpful when the parameter tuning12

involved in the development of a scheme is objective enough so that these parameters can be13

described as functions of the statistics of the climate system. Provided that the dynamics14

of the process in question is sufficiently stochastic, and that the external forcing is not too15

strong, the fluctuation-dissipation theorem (FDT) might be a tool to predict from the statis-16

tics of a system (e.g. the atmosphere) how an objectively tuned parameterization should17

respond to external forcing (e.g. by anomalous sea-surface temperatures). This problem is18

addressed within the framework of low-order (reduced) models for barotropic flow on the19

sphere, based on a few optimal basis functions and using an empirical linear sub-grid-scale20

(SGS) closure. A reduced variant of quasi-Gaussian FDT (rqG-FDT) is used to predict the21

response of the SGS closure to anomalous local vorticity forcing. At sufficiently weak forcing22

use of the rqG-FDT is found to systematically improve the agreement between the response23

of a reduced model and that of a classic spectral code for the solution of the barotropic24

vorticity equation.25
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1. Introduction26

Both curse, challenge and beauty of atmospheric dynamics is the enormous range of27

scales involved. Beginning with planetary-scale climate-variability patterns, it extends over28

synoptic-scale weather and mesoscale systems, such as fronts or gravity waves, down to29

turbulence on the millimeter scale. Understanding the interactions between these various30

scales is both a daunting task and a necessity for faithful climate modeling. As has been31

argued by Held (2005) a hierarchy of models, from full-fledged climate-system models (CSM)32

down to conceptional models, is needed to gain and keep overview in this complex setting,33

and thus go on making progress in climate research as a whole. The basis for typical con-34

ceptional modeling of atmosphere or ocean dynamics is some kind of filtering. The most35

classical example is quasigeostrophic theory (Charney 1948), providing the basis for cor-36

responding multi-layer models (Phillips 1954, 1956) as have been applied, e.g., in climate37

modeling by Opsteegh et al. (1998). Others are soundproof approximations of atmospheric38

dynamics (Ogura and Phillips 1962; Lipps and Hemler 1982; Lipps 1990; Durran 1989),39

or the planetary-geostrophic approximation (Robinson and Stommel 1959; Welander 1959;40

Phillips 1963) which is at the heart of representative earth system models of intermediate41

complexity (e.g. Petoukhov et al. 2000). An especially compact approach is represented by42

deterministic low-order models based on some kind of optimal basis patterns (e.g. Selten43

1995; Achatz et al. 1995; Kwasniok 1996; Achatz and Schmitz 1997; Selten 1997; Achatz44

and Branstator 1999; Achatz and Opsteegh 2003a,b; Kwasniok 2004, 2007). Although these45

have been shown to reproduce various aspects of internal climate variability, they have not46

yet found their way into practical climate modeling.47

Common to both conceptional and full-fledged climate models (even the latter are there-48

fore in some regard conceptional) is that they do not resolve certain small-scale structures49

or processes (e.g. synoptic-scale or mesoscale systems, clouds etc.) which yet have a non-50

negligible feedback on the resolved scales. That feedback must be taken into account via51

suitably formulated sub-grid-scale (SGS) parameterizations. Regardless whether these are52
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given a stochastic (e.g. Hasselmann 1976; Farrell and Ioannou 1993, 1996a,b; Majda et al.53

2003; Franzke et al. 2005; Franzke and Majda 2006; Dolaptchiev et al. 2012) or deterministic54

formulation, nonlinearity and general complexity of the processes in question have so far55

always prevented a complete à-priori derivation from first principles. The common approach56

is data driven, i.e. some assumption is made about the functional form of the parameter-57

ization, often based on some theory, and the corresponding parameters are obtained in a58

more or less objective manner by tuning against some reference data set. The crudeness in59

this procedure varies widely. At one end one might see traditional damping by some hyper-60

diffusivity, typically tuned via eye-ball comparisons of simulated mean fields or fluxes. A61

sophisticated approach is stochastic mode reduction suggested by Majda et al. (2003) where62

the nonlinear self-interaction of unresolved scales is given an empirical description by an63

Ornstein-Uhlenbeck process which is then used for an explicit derivation of the stochastic64

SGS parameterization. Somewhat of a middle route is perhaps represented by Achatz and65

Branstator (1999) who use an empirical linear SGS closure where the parameters have been66

chosen so as to minimize the mean error between resolved tendencies either predicted by the67

model or measured in a reference data set, there from an atmospheric general circulation68

model (GCM).69

A perhaps prototypical problem of empirical SGS schemes is confronting Achatz and70

Branstator (1999): Their low-order models, based on a limited number of empirical orthog-71

onal functions (EOF), simulate the GCM climate very well. Nonetheless they seem to fail72

to reproduce the climate response of the GCM to some local anomalous thermal forcing. An73

explanation for this could have been that the nonlinear dynamics of the low-order model,74

obtained from a projection of the equations of a quasigeostrophic two-layer model onto the75

EOFs, was too simple. However, analogous attempts by Achatz and Opsteegh (2003a,b),76

now using primitive equation dynamics, did not solve the problem. Again the GCM climate77

was simulated well, again the anomalous response to local thermal forcing could not be re-78

produced to a satisfactory degree. Still a possible explanation could be that the dynamics79
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of the low-order model, using the dry primitive equations on three layers, is too far away80

from that of the much more sophisticated 19-level GCM (described by Voss et al. 1998).81

The problem might, however, be deeper and more general than that: as the SGS-scheme82

parameters have been determined by tuning against the unperturbed GCM climate, and as83

that works so well, it might be that an SGS scheme tuned à-posteriori against the perturbed84

climate could enable the low-order model to reproduce the anomalous response. In other85

words, the SGS closure should be formulated climate dependent. This is perhaps a problem86

to be faced by many SGS parameterizations in climate models: The less they are based on87

first principles, and the more they rely on tuning against present-day or past climate, the88

more they might be in danger of failing in a changing climate.89

The ideal approach to tackle this problem would be the development of SGS schemes90

based sufficiently on first principles so that the empirical parameters do not matter that91

much anymore. Perhaps stochastic mode reduction (Majda et al. 2003; Dolaptchiev et al.92

2012) points into a direction helping under some circumstances, as is also suggested by Majda93

et al. (2010) who show a reduced stochastic model of a three-component system to exhibit a94

realistic response to external perturbations. One might also reconsider the tuning processes95

for the SGS parameterization. The minimization of relative entropy between the statistics96

of low-order model and GCM might lead to reduced models with a more faithful climate97

sensitivity (Majda and Gershgorin 2010, 2011a,b; Branicki and Majda 2012). However, we98

here follow another route. As long as the parameter tuning implies the minimization of some99

objectively formulated error, e.g. in predicted tendencies, between model and reference data100

set, a reasonable à-priori estimate of the change in the corresponding statistics could help.101

Fortunately, under certain conditions such an estimate can be obtained from the fluctuation-102

dissipation theorem (Deker and Haake 1975; Hänggi and Thomas 1977; Risken 1984; Gritsun103

2001; Gritsun et al. 2002; Gritsun and Branstator 2007; Abramov and Majda 2009; Majda104

et al. 2010; Cooper and Haynes 2011). For an analysis of the potential of this approach105

we have restrained ourselves to a minimal framework we hoped to contain all necessary106
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ingredients. Instead of a full-fledged GCM, or even real climate data, we use a spectral107

code for the barotropic vorticity equation on the sphere as toy atmosphere, construct a108

low-order model based on EOFs (Selten 1995), and use the empirical SGS parameterization109

as proposed by Achatz and Branstator (1999). Our results indicate that the fluctuation110

dissipation theorem (FDT) is not only able to improve the performance of the low-order111

model in simulating the response to anomalous vorticity forcing, but that the corresponding112

prediction is also better than that from the most frequently used quasi-Gaussian variant of113

the FDT itself.114

The manuscript is structured as follows: Section 2 describes the toy atmosphere, the115

approach for construction of a low-order model for its simulation, and some characteristics116

of the latter. Section 3 gives an account of how we use the FDT for formulating the climate117

dependence of the SGS closure of the low-order model, while section 4 presents results on how118

well this approach works for the simulation of the response to anomalous vorticity forcing.119

Finally we summarize and discuss our findings in section 5.120

2. Toy atmosphere and low-order climate model121

a. Toy atmosphere122

The toy atmosphere used here is a spectral code (Selten 1995) for the solution of the123

barotropic vorticity equation124

∂∇2ψ

∂t
+ J

(
ψ,∇2ψ + f + f0

h

H

)
= −kE∇2ψ − kh∇6ψ + F (1)

on the sphere. Here ψ is the streamfunction, J the standard Jacobian operator, f the125

Coriolis parameter, f0 a midlatitude value of the latter (at 45◦N), h/H a normalized envelope126

orography, kE represents Ekman damping (with a time scale of 15d), kh is the hyper-diffusion127

coefficient (damping the shortest total wavelengths with a time scale of 3d), and F is a forcing128

tuned by Franzke et al. (2005) so as to lead to a model variability as representative of available129
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northern-hemisphere analysis data as possible. The spherical-harmonic expansion of the130

streamfunction is truncated in a triangular manner at T21. Since the model is constrained131

to be symmetric with respect to the equator it has N = 231 degrees of freedom, i.e. non-zero132

vorticity spectral coefficients where real and imaginary parts count separately. Gathering133

these in a state vector x ϵRN , the dynamical equation of our toy atmosphere can be written134

dx

dt
= G (x) (2)

where G is the appropriate function.135

b. Low-order climate model136

Instead of spherical harmonics our low-order climate model uses as basis functions em-137

pirical orthogonal functions (EOF). These have been extracted from data from 200000d of138

our toy atmosphere. An energy metric has been employed (Selten 1995) for this so that the139

norm140

|x|2 = a2
∫ 2π

0

dλ

∫ π/2

−π/2

dϕ cosϕ |∇ψ|2

=
21∑

m=1

21∑
n=m

n (n+ 1) |ψmn|2 = xtMx (3)

is proportional to the total energy of the flow, where a is the radius of the earth, λ and ϕ141

geographic longitude and latitude, and ψmn a spectral coefficient at zonal and total wavenum-142

bers m and n. The corresponding metric M is an N×N -dimensional real symmetric matrix.143

We found that 43 EOFs suffice to explain more than 90% of the variance in the analyzed144

data. In general, if M leading EOFs are chosen to approximate the state vector, the latter145

can be written146

x = ⟨x⟩+ Pa+ ε (4)

where angle brackets indicate the time mean, P is an N ×M -matrix containing the EOFs147

as columns, a ϵRM is the vector of EOF expansion coefficients (the principal components),148
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and ε the time dependent truncation error. The latter is orthogonal to the EOFs so that149

the principal components can be determined from the data via150

a = PtMx′ (5)

where a prime indicates deviations from the mean, i.e. here x′ = x− ⟨x⟩.151

Taking the time derivative, and using the dynamical equation (2) of the toy atmosphere152

together with the reduced representation (4) one gets153

da

dt
= PtMG (⟨x⟩+ Pa) + s (x, a) (6)

where s is the SGS error arising from the neglect of the truncation error inside G. A154

low-order climate model for a is obtained by replacing the SGS error by a suitably chosen155

parameterization p (a). The model equations are then156 (
da

dt

)
M

= P (a) + p (a) , (7)

the shortcut P (a) = PtMG (⟨x⟩+ Pa) indicating the projected model without SGS param-157

eterization. Note that the (toy) atmosphere data do not satisfy (7) but rather158

da

dt
= P (a) + p (a) + εp (x, a) , (8)

with a parameterization error εp (x, a) = s (x, a)− p (a). Following Achatz and Branstator159

(1999) we now choose a linear parameterization160

p (a) = F+ La (9)

and, instead of tuning the vector F and the matrix L by test integrations and eyeball fits of161

the climate-model climatology, we determine them by the requirement that, averaged over162

the available data, the norm of the parameterization error is to be as small as possible. This163

amounts to the solution of a linear regression problem, yielding164

L = ⟨s′a′t⟩⟨a′a′t⟩−1 (10)

F = ⟨s⟩ − L⟨a⟩ . (11)
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This way the SGS-closure parameters in (9) are determined from the climate statistics of the165

toy atmosphere. Necessary input are the covariance ⟨s′a′t⟩ between SGS error s and the state166

vector a modeled by the climate model, the auto-covariance ⟨a′a′t⟩ of the latter, its mean167

⟨a⟩, and the mean SGS error ⟨s⟩. Fig. 1 shows mean streamfunction and streamfunction168

variance from daily data from 200000d of the toy atmosphere, and the corresponding results169

from low-order models based on 40 EOFs, either without or with SGS parameterization.170

The improvement achieved by the parameterization is evident.171

3. Climate dependent SGS closure by the fluctuation-172

dissipation theorem173

a. External forcing174

The question now is whether the low-order climate model can respond correctly to some175

external atmospheric forcing. As in Achatz and Branstator (1999) and Achatz and Opsteegh176

(2003b) we choose a local forcing. However, since the variability of the toy atmosphere is177

low close to the equator, and thus the leading EOFs would not be well able to represent a178

tropical forcing, we have rather chosen to place it at midlatitudes. The vorticity forcing is179

of the form180

δFζ = A · 5 · 10−6f cos2
(
λ− λc
∆λ

)
cos2

(
ϕ− ϕc

∆ϕ

)
(12)

The scaling has been chosen so that the anomalous forcing is at A = 1 of the same order as181

the climatological forcing, i.e. δFζ/F = O(1). In all experiments to be discussed here the182

forcing is centered at latitude ϕc = 45◦, its width is ∆λ = ∆ϕ = 20◦, and it has amplitude183

A = 0.1. In total we will base our conclusions on experiments with center longitude of the184

forcing being at λc = 0◦, 30◦, . . . , 330◦. It has always been projected on the same EOFs as185

the corresponding low-order climate models are using. As an example we show in Fig. 2 the186

case λc = 180◦, either total, projected onto 40 EOFs, or projected onto 90 EOFs.187
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b. Fluctuation-dissipation theorem188

The external forcing changes the statistics of the toy atmosphere so that a low-order189

climate model should incorporate this effect in predicting the atmosphere response to the190

forcing. In principle, one can always do the experiment and obtain a perturbed closure à-191

posteriori from data from the perturbed climate, using (10) and (11). The perturbed model192

would then be193

da

dt
= P (a) + F+ La+ δF+ δLa+ PtMδFζ (13)

where PtMδFζ represents the anomalous-forcing spectral coefficients projected onto the194

EOFs, and195

δL = δ
(
⟨s′a′t⟩⟨a′a′t⟩−1

)
(14)

δF = δ⟨s⟩ − δ (L⟨a⟩) (15)

are the corrections in the closure due to the changing climate. Obviously this à-posteriori196

tuning would make the low-order model useless. Only if the changing statistics can be197

predicted before-hand this would be a viable option.198

Fortunately, the fluctuation-dissipation theorem (Kraichnan 1959; Risken 1984) offers a199

way how this prediction could be done approximately, albeit under certain assumptions. It200

considers either a deterministic system governed by201

dx

dt
= A (x, t) (16)

or a stochastic system controlled by the corresponding stochastic differential equation202

dx = A (x, t) dt+ B (x, t) dW (17)

where x is the state vector of the system, here of the (toy) atmosphere, A is the deterministic203

drift, B the diffusion tensor, and dW a multidimensional Wiener process. The applicability204

of the FDT to deterministic systems is often hampered by the fractality of the corresponding205

probability-density function (PDF). In such cases it can help to add a small noise term, as in206
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(17), to ensure that the PDF is sufficiently smooth (Zeeman 1988). In our application here,207

e.g., the underlying system is not stochastic, but we assume that the nonlinear dynamics208

of the smallest-scale processes acts in a sufficiently irregular manner so that stochasticity209

is a reasonable approximation. To proceed, the general FDT predicts the response of the210

statistics of the system to an infinitesimally small perturbation δf (x, t) of the drift vector so211

that212

A (x, t) → A (x, t) + δf (x, t) . (18)

It provides an estimate of the change in the expectation of any observable h (x), i.e. of213

⟨h⟩ (t) =
∫
dNx p (x, t)h (x) (19)

where p is the PDF. This is also the situation encountered in our problem. Due to (5) and214

s = s(x, a) all the climate means needed for the determination of the SGS closure parameters215

in (11) and (10) are expectations of suitably defined observables h(x). Quasi-Gaussian FDT216

(qG-FDT), the most frequently used variant of FDT assumes that the equilibrium PDF is217

Gaussian. This is is a certain restriction. Cooper and Haynes (2011) suggest how to relax218

it by estimating the equilibrium PDF by a kernel method. An alternative, not inherently219

restricted to low-dimensional applications as there, is the blended short-time/quasi-Gaussian220

FDT method (ST/qG-FDT) developed by Abramov and Majda (2009). This approach,221

superior to qG-FDT, uses a tangent linear model to determine the short-time response to222

external forcing, combined with qG-FDT for longer response times. For the time being,223

however, we want to stick with qG-FDT, since it is more easily implemented than ST/qG-224

FDT and since it typically requires considerably less reference data than kernel methods.225

Under the assumption of Gaussianity the predicted steady-state response for t → ∞ to an226

anomalous forcing227

δf (x, t) = δf (t) (20)

is228

lim
t→∞

δ⟨h⟩ (t) = lim
t→∞

∫ t

0

dτ⟨h [X (τ)]X′t (0)⟩⟨x′x′t⟩−1δf (t− τ) (21)
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which yields for constant forcing, as here,229

lim
t→∞

δ⟨h⟩ (t) = Rδf , (22)

with qG-FDT response operator230

R =

∫ ∞

0

dτ⟨h [X (τ)]X′t (0)⟩⟨x′x′t⟩−1 (23)

The task is to determine the integral over all time lags of the lagged covariance between231

the observable and the state vector, multiplied by the inverse of the lag-zero auto-covariance232

matrix. This offers a way for the determination of the response of all SGS closure parameters233

in (11) and (10), or rather of the expectations ⟨a⟩, ⟨s⟩, ⟨s′a′t⟩, and ⟨a′a′t⟩ required for their234

calculation.235

c. Reduced quasi-Gaussian FDT236

Referring to (10) and (11) we note again that the observables we need modified means237

for are the reduced state vector a, the SGS error s, the matrix s′a′t yielding in the mean the238

covariance of the SGS error with the reduced state vector, and the matrix a′a′t averaging239

to the auto-covariance. The ability of qG-FDT to predict the atmospheric response in these240

observables has been estimated by performing 12 experiments with a mid-latitude anomalous241

forcing with amplitude A = 0.1 at longitudes λc = 0◦, 30◦, . . . , 330◦, and projected onto the242

leading 40 EOFs. Each case has been integrated for 200000d. A reference case has been243

obtained by integrating the model over 500000d, and the qG-FDT response operator has244

been approximated by integrating the lagged covariances in the reference data over 50d. For245

this a simple Riemann sum has been used, with a time step of 1d. Following Gritsun and246

Branstator (2007) and Majda et al. (2010) we have not determined the operator in the full247

state space but rather in the state space spanned by the leading 40 EOFs. The estimate of248

the response in the four quantities in question has then been obtained using qG-FDT, and249

that has been compared to the true response from the toy atmosphere. The comparison has250
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been made by calculating a relative error in EOF space, defined, either for two vectors a and251

b, or for two matrices A and B, as252

ϵ =


|a− b|2

|a| |b|
|A− B|2

|A| |B|

(24)

where the norm of a matrix is taken to be the Frobenius norm, i.e. the square root of the253

squared sum of matrix elements. Pattern correlations, not shown here, have been calculated254

as well, without yielding any further insights.255

The results are shown in Fig. 3. With the one exception of the forcing located at256

λc = 270◦, the anomalous first moments ⟨a⟩ and ⟨s⟩ are predicted by qG-FDT with an error257

less than 1, whereas the second moments ⟨s′a′t⟩ and ⟨a′a′t⟩ are not predicted so well. This258

implies that the prediction of the change in the linear operator of the SGS closure, using (14),259

could be flawed. As Fig. 4 shows, this is indeed the case. The error between the change either260

estimated from qG-FDT or obtained à-posteriori from the data of the perturbed atmosphere261

is always of order 1 or larger. The same holds for the prediction of the change of the forcing262

of the SGS parameterization, using (15), since it uses the ill-estimated δL.263

It turns out, however, that if δL is neglected, a useful estimate of δF can be obtained.264

This reduced quasi-Gaussian FDT (rqG-FDT) uses265

δL = 0 (25)

δF = δ⟨s⟩ − Lδ⟨a⟩ , (26)

Its quality is shown in Fig.4 as well. Cases of anomalous vorticity forcings projected on more266

or less EOFs (20, 30, ..., 90), and low-order models of corresponding resolution have been267

investigated as well, indicating a general potential of reduced qG-FDT to make a useful268

prediction of the anomalous SGS forcing. The 90-EOF case, e.g., investigated below in269

somewhat greater detail, shows the same qualitative results as the 40-EOF case discussed270

here. Therefore our method of choice applied below is rqG-FDT.271
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4. Results272

The utility of reduced qG-FDT is eventually decided by its ability to help a low-order273

climate model in simulating the atmospheric response to anomalous vorticity forcing. Our274

respective results will first be illustrated using a representative example. This is the case of275

anomalous forcing at longitude λc = 210◦ projected onto 90 EOFs. Fig. 5 shows the mean-276

streamfunction response of the toy atmosphere to this forcing, the corresponding response277

from three different 90-EOF models, and that predicted by qG-FDT. The low-order climate278

model CM0 uses an unmodified SGS parameterization, the model CMP applies a parameter-279

ization modified à-posteriori by a new determination of the SGS-model parameters from the280

perturbed atmosphere, and the model CMF uses a parameterization modified before-hand281

via reduced qG-FDT. This is also compared to the direct prediction of the streamfunction282

response by qG-FDT. The atmospheric response has a strong zonal component with maxima283

over the pole and in the subtropics, and a minimum in midlatitudes. A wave component284

exhibits a maximum over the subtropical Pacific, and three minima over the midlatitude285

Pacific and Atlantic ocean and over Siberia. This pattern is reproduced quite well even by286

CM0. The relative error in the simulated response is 0.124. CMF brings an improvement,287

e.g. over the Pacific, so that the relative error drops to 0.058. This is even better than the288

direct qG-FDT result which has a relative error of 0.228. For better orientation Fig. 6 shows289

the change in the mean zonal wind, exhibiting an intensification and eastward shift of the290

two jet streams. Maximum values are about 9m/s. This is of the same order as zonal-mean291

zonal wind changes in present-day simulations of anthropogenic climate change (e.g. Lorenz292

and DeWeaver 2007). Notwithstanding its linear nature rqG-FDT is able to predict the293

change in the SGS parameterization well enough that model CMF can simulate that mean294

zonal-wind change faithfully.295

As discussed in subsection 3c, standard qG-FDT is well able to predict the change in first296

moments of the atmosphere. This is also visible in the results shown so far. Second moments,297

however, had been shown to be more difficult an object for qG-FDT. This is born out in Fig.298
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7, where the response in the streamfunction variance is shown. qG-FDT predicts a signal299

which is considerably too strong (relative error 2.47). Here the nonlinear models perform300

better, especially if supplemented by a rqG-FDT modification of the SGS parameterization.301

The predicted response is slightly too weak, but the predicted pattern is matched very well,302

with an increase of variance over the pole, and north and south of the jet streams. The303

relative errors are 0.527 for CM0 and 0.342 for CMF.304

Relative errors, yielding a quantitative estimate of the quality of the simulated response,305

have not just been calculated for an anomalous forcing at longitude λc = 210◦, but for all306

twelve cases examined. Fig. 8 shows the relative errors in the predictions of the change in307

the first moments. With the exception of the three cases with forcing longitude between 210◦308

and 270◦, qG-FDT is better able to predict the response than the unmodified climate model.309

Only in four out of the twelve cases (λc = 60◦, 180◦, 300◦ and 330◦), however, rqG-FDT is310

not able to improve the climate model so much that it can outdo qG-FDT. The balance in311

favor of climate models supplemented by rqG-FDT becomes even more convincing in the312

case of the second moments, shown in Fig. 9. Here it is always the climate model using rqG-313

FDT for the adjustment of the SGS parameterization that gives the better prediction. Note314

also that the model with SGS parameterization modified à-posteriori is always performing315

best. Although this model is useless in itself, this fact demonstrates that there might be even316

more potential in the approach, should it become possible to also predict the second-moment317

change better than qG-FDT is able to.318

Finally, we give an overview how our results depend on the number of EOFs which the319

anomalous forcing and the climate models are based on. This is to give an indication on320

how well the approach might work at various conceivable levels of climate-model simplicity in321

comparison with the true complexity of the atmosphere. For this purpose, we have calculated,322

for either the first- or second-moment errors, a mean over all twelve cases and a root-mean-323

square deviation. Mean plus/minus r.m.s. deviation of the first-moment errors are shown in324

Fig. 10 for models based on between 20 and 90 EOFs. The smallest models, based on only 20325
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EOFs, are performing worse than the qG-FDT, even if the SGS parameterization is adjusted326

à-posteriori. At model resolutions too coarse the linear ansatz for the SGS parameterization327

cannot compete with qG-FDT. This already changes, however, at a resolution of 30 EOFs.328

At this and all higher resolutions simulations by an optimally adjusted nonlinear climate329

model can outperform direct application of qG-FDT. Nonetheless, application of rqG-FDT330

helps to improve the model behavior at all examined resolutions. Models based on 60 or 70331

EOFs become as good as qG-FDT if rqG-FDT is used to adjust the parameterization, and332

at higher resolutions they perform better. This gain becomes even more obvious as one looks333

at the second moments. Fig. 11 shows the weakness of qG-FDT in predicting the anomaly334

in these, but also that the climate-model simulations can yield useful results, especially335

for models with higher resolution and supplemented by rqG-FDT. The modification of the336

SGS parameterization by rqG-FDT gives an approximate net 30% improvement over models337

without modified parameterization, and considerably more over the direct application of338

qG-FDT, when 80 or 90 EOFs are used.339

5. Summary and discussion340

We have addressed the question how sub-grid-scale (SGS) parameterizations in climate341

models can be formulated so that they respond correctly to an externally forced change in342

climate statistics. For this purpose we have considered a toy atmosphere represented by a343

spectral code, with resolution T21, for the solution of the barotropic vorticity equation on344

the sphere. The vorticity forcing in that code has been chosen so that its climate exhibits a345

certain similarity to that of the real atmosphere. Low-order climate models have then been346

constructed which are based on empirical orthogonal functions (EOF). For this an energy347

metric has been used. The identified variance spectrum is relatively flat. About 40 basis348

patterns are needed for representing 90% of the total variance of the toy atmosphere. The349

dynamical equations of the climate models, varying by the number of EOFs they are based350
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on, have been obtained by projecting the T21 code for the barotropic vorticity equation onto351

the EOFs, and by adding an SGS parameterization which is to describe the feedback from352

unresolved modes. That parameterization has been given a formulation which is linear in353

terms of the EOF expansion coefficients. The respective parameters, comprised in an SGS354

forcing and a linear SGS operator, have been determined from the toy-atmosphere climate in355

such a manner that the residual error between modeled and measured tendencies, averaged356

over all available climate data, is as small as possible. This represents an objective tuning357

process.358

Parameters of an SGS parameterization tuned at present-day climate might have to359

respond to climate change. We suggest that the fluctuation-dissipation theorem (FDT)360

is used to predict this response. Corresponding response operators have been constructed361

from the toy-atmosphere climate data, assuming their probability-density function (PDF)362

to be Gaussian (qG-FDT). This is a limiting assumption which one could potentially relax.363

A more general treatment would, however, either necessitate the estimate of the PDF by364

kernel methods (Cooper and Haynes 2011) or require the use of a tangent-linear model for365

the determination of the short-time response to external forcing (Abramov and Majda 2009).366

Kernel methods can become computationally expensive, and they are inherently restricted to367

low-dimensional applications. The ST/qG-FDT method of Abramov and Majda (2009) does368

not suffer from this problem. It might be an option to be tested in the future. However, we369

also speculate that, due to the central-limit theorem, the deviations from Gaussianity might370

become the smaller the more complex, and thus realistic, the examined setting becomes.371

The ability of the qG-FDT to predict the response of the SGS parameterizations has been372

investigated using the example of anomalous local vorticity forcings in midlatitudes, at twelve373

different equidistant positions in geographic longitude, and projected on the EOF bases which374

the corresponding low-order models use. It is found that qG-FDT can predict the response375

in the first moments of the toy-atmosphere climate well, not however that of the second376

moments. This is in line with the findings of Majda et al. (2005) that, for systems with377
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quadratic nonlinearity, use of a Gaussian PDF in (21) yields third-order accurate results for378

the first moments, while those for the second moments are second-order accurate. Indeed379

Gritsun et al. (2008) found a worse, albeit reasonable, qG-FDT performance for second than380

for first moments. Moreover, the forcing chosen here is sub-optimal, as Abramov and Majda381

(2009) show that ST/qG-FDT applied to this system works best for anomalous forcings382

projecting onto the leading EOF 1. This is no real surprise since the toy-atmosphere with383

its 231 degrees of freedom is only roughly consistent with the basic assumptions of the384

FDT. Only barotropic Rossby waves are present. Neither does the toy atmosphere allow385

comparatively fast synoptic-scale processes such as baroclinic instability, nor does it contain386

gravity waves. Thus a basic picture of slow modes stochastically forced by components with387

much shorter intrinsic time scales is not met very well so that the system PDF could have a388

stronger fractality than allowed under ideal conditions. Corresponding extensions should be389

considered in the future. In the present context, however, the reliable qG-FDT prediction390

of the changes in the first moments can be used to predict the response of the SGS forcing391

to the external forcing. In an approach which we call reduced qG-FDT (rqG-FDT) this has392

been done while the linear SGS operator has been kept untouched.393

The reduced qG-FDT has then been applied to the various anomalous-forcing cases.394

Low-order models with SGS closure adjusted via rqG-FDT have been investigated for their395

ability in predicting first- and second-moment anomalies in the data of the perturbed toy396

atmosphere. This has been compared to the potential of low-order models without adjusted397

parameterization, or of the direct application of qG-FDT. Only very small models, based398

on only 20 EOFs, perform worse than qG-FDT. With a basis of intermediate size (30 –399

60 EOFs) they are more successful in predicting the second-moment anomalies, i.e. the400

anomalous fluxes, while direct application of qG-FDT. gives a more reliable prediction of401

the first-moment anomalies, i.e. the anomalous streamfunction. There, however, rqG-FDT is402

already able to improve the low-order model prediction, as compared to simulations without403

modified SGS parameterization. An encouraging result is that models based on sufficiently404
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many EOFs (80 or 90) perform clearly best if adjusted via rqG-FDT. Both first- and second-405

moment anomalies are simulated better (by about 30% for second moments) than by models406

without adjusted parameterization, or (by even more) than by the direct application of the407

qG-FDT.408

It thus seems that the combination of FDT and explicit simulations of the nonlinear409

system is a promising approach which should be pursued further. Another promising route410

specifically towards realistic low-order modelling of the atmospheric climate could perhaps411

be the combination of a reduced stochastic model with non-Gaussian FDT. At least for412

a three-component system Majda et al. (2010) show this approach to be significantly more413

powerful than the application of qG-FDT to the complete system. One might also reconsider414

the tuning process for the SGS parameterization by using concepts from information theory415

(Majda and Gershgorin 2010, 2011a,b; Branicki and Majda 2012). However, given the en-416

couraging results we have here we see our comparatively simple approach as supplementary417

to such ideas. Interesting here is also that low-order models with SGS parameterization de-418

termined directly from anomalous data of the toy atmosphere were performing even better419

than all other models. This indicates that more general FDT approaches not relying on420

quasi-Gaussianity (Abramov and Majda 2009; Cooper and Haynes 2011) could yield better421

results. It also indicates, however that as soon as the FDT as a whole is better able to also422

predict the second-moment anomalies, its application to the adjustment of the SGS parame-423

terization might lead to even more useful results. We hope that this will be borne out in the424

future when the approach will have been applied to toy atmospheres, or even real climate425

data, with a better time-scale separation between slow and fast processes as here. Baroclinic426

models, allowing for baroclinic instability, or unbalanced models, containing gravity waves,427

will be interesting testbeds to be examined. As a corresponding encouragement we see the428

findings of Gritsun et al. (2008) where in an application of qG-FDT to GCM data even the429

second-moment results were quite reasonable.430

18



Acknowledgments.431

We gratefully acknowledge support by F. Selten, who allowed us to use his spectral code,432

and by C. Franzke, who provided us with his empirical forcing. Comments by A. Majda433

and an anonymous reviewer helped a lot in improving the manuscript. AG acknowledges434

support by the Russian Ministry for Sciences and Education (project 14.740.11.0639).435

19



436

REFERENCES437

Abramov, R. V. and A. J. Majda, 2009: New algorithms for low-frequency climate response.438

J. Atmos. Sci., 66, 286–309.439

Achatz, U. and G. Branstator, 1999: A two-layer model with empirical linear corrections and440

reduced order for studies of internal climate variability. J. Atmos. Sci., 56, 3140–3160.441

Achatz, U. and J. D. Opsteegh, 2003a: Primitive-equation-based low-order models with442

seasonal cycle. Part I: Model construction. J. Atmos. Sci., 60, 465–477.443

Achatz, U. and J. D. Opsteegh, 2003b: Primitive-equation-based low-order models with sea-444

sonal cycle. Part II: Application to complexity and nonlinearity of large-scale atmosphere445

dynamics. J. Atmos. Sci., 60, 478–490.446

Achatz, U. and G. Schmitz, 1997: On the closure problem in the reduction of complex447

atmospheric models by PIPs and EOFs: A comparison for the case of a two-layer model448

with zonally symmetric forcing. J. Atmos. Sci., 54, 2452–2474.449

Achatz, U., G. Schmitz, and K.-M. Greisiger, 1995: Principal interaction patterns in baro-450

clinic wave life cycles. J. Atmos. Sci., 52, 3201–3213.451

Branicki, M. and A. Majda, 2012: Quantifying uncertainty for predictions with model error452

in non-gaussian systems with intermittency. Nonlinearity, 25, 2543–2578.453

Charney, J. G., 1948: On the scale of atmospheric motion. Geofys. Publ. Oslo, 17, 1–17.454

Cooper, F. C. and P. H. Haynes, 2011: Climate sensitivity via a nonparametric fluctuation-455

dissipation theorem. J. Atmos. Sci., 68, 937–953.456

20



Deker, U. and F. Haake, 1975: Fluctuation-dissipation theorems for classical processes. Phys.457

Rev. A, 11, 2043–2056.458

Dolaptchiev, S., U. Achatz, and I. Timofeyev, 2012: Stochastic closure for local averages in459

the finite-difference discretization of the forced burgers equation. Theor. Comput. Fluid460

Dyn, doi:10.1007/s00162-012-0270-1.461

Durran, D., 1989: Improving the anelastic approximation. J. Atmos. Sci., 46, 1453–1461.462

Farrell, B. F. and P. J. Ioannou, 1993: Transient development of perturbations in stratified463

shear flow. J. Atmos. Sci., 50, 2201—2214.464

Farrell, B. F. and P. J. Ioannou, 1996a: Generalized stability theory. Part I: Autonomous465

operators. J. Atmos. Sci., 53, 2025—2040.466

Farrell, B. F. and P. J. Ioannou, 1996b: Generalized stability theory. Part II: Nonautonomous467

Operators. J. Atmos. Sci., 53, 2041–2053.468

Franzke, C. and A. J. Majda, 2006: Low-order stochastic mode reduction for a prototype469

atmospheric GCM. J. Atmos. Sci., 63, 457–479.470

Franzke, C., A. J. Majda, and E. Vanden-Eijnden, 2005: Low-order stochastic mode reduc-471

tion for a realistic barotropic model climate. J. Atmos. Sci., 62, 1722–1745.472

Gritsun, A. and G. Branstator, 2007: Climate response using a three–dimensional operator473

based on the fluctuation-dissipation theorem. J. Atmos. Sci., 64, 2558–2575.474

Gritsun, A., G. Branstator, and A. Majda, 2008: Climate response of linear and quadratic475

functionals using the fluctuation-dissipation theorem. J. Atmos. Sci., 65, 2824–2841.476

Gritsun, A. S., 2001: Fluctuation-dissipation theorem on the attractors of atmospheric mod-477

els. Russ. J. Numer. Analysis Math. Modell., 16, 115–133.478

21



Gritsun, A. S., G. Branstator, and V. P. Dymnikov, 2002: Construction of the linear response479

operator of an atmospheric general circulation model to small external forcing. Russ. J.480

Numer. Anal. Math. Modell., 17, 399416.481

Hänggi, P. and H. Thomas, 1977: Time evolution, correlations and linear response of non-482

Markov processes. Z. Phys., 26B, 85–92.483

Hasselmann, K., 1976: Stochastic climate models, Part 1: Theory. Tellus, 28, 473 – 485.484

Held, I. M., 2005: The gap between simulation and understanding in climate modeling. Bull.485

Amer. Meteor. Soc., 86, 1609–1614, doi:10.1175/BAMS-86-11-1609.486

Kraichnan, R. H., 1959: Classical fluctuation-relaxation theorem. Phys. Rev., 113, 1181–487

1182.488

Kwasniok, F., 1996: The reduction of complex dynamical systems using principal interaction489

patterns. Physica D, 92, 28–60.490

Kwasniok, F., 2004: Empirical low-order models of barotropic flow. J. Atmos. Sci., 61,491

235–245.492

Kwasniok, F., 2007: Reduced atmospheric models using dynamically motivated basis func-493

tions. J. Atmos. Sci., 64, 3452–3474.494

Lipps, F., 1990: On the anelastic approximation for deep convection. J. Atmos. Sci., 47,495

1794–1798.496

Lipps, F. and R. Hemler, 1982: A scale analysis of deep moist convection and some related497

numerical calculations. J. Atmos. Sci., 29, 2192–2210.498

Lorenz, D. J. and E. T. DeWeaver, 2007: Tropopause height and zonal wind response to499

global warming in the IPCC scenario integrations. J. Geophys. Res., 112, D10 119, doi:500

10.1029/2006JD008087.501

22



Majda, A., R. Abramov, and M. Grote, 2005: Information theory and stochastics for multi-502

scale nonlinear systems. CRM Monogr. Series, 25, 1–133.503

Majda, A. and B. Gershgorin, 2010: Quantifying uncertainty in climate change science504

through empirical information theory. Proc. Natl. Acad. Sci., 107, 14 958–14 963.505

Majda, A. and B. Gershgorin, 2011a: Improving model fidelity and sensitivity for complex506

systems through empirical information theory. Proc. Natl. Acad. Sci., 108, 10 044–10 049.507

Majda, A. and B. Gershgorin, 2011b: Link between statistical equilibrium fidelity and fore-508

casting skill for complex systems with model error. Proc. Natl Acad. Sci., 108, 12 599–509

125 604.510

Majda, A., B. Gershgorin, and Y. Yuan, 2010: Low frequency climate response and511

fluctuation- dissipation theorems: theory and practice. J Atmos Sci., 67, 1186–1201.512

Majda, A. J., I. Timofeyev, and E. Vanden-Eijnden, 2003: Systematic strategies for stochas-513

tic mode reduction in climate. J. Atmos. Sci., 60, 1705–1722.514

Ogura, Y. and N. A. Phillips, 1962: A scale analysis of deep and shallow convection in the515

atmosphere. J. Atmos. Sci., 19, 173–179.516

Opsteegh, J., R. Haarsma, F. Selten, and A. Kattenberg, 1998: ECBILT: a dynamic alter-517

native to mixed boundary conditions in ocean models. Tellus A, 50 (3), 348–367, URL518

http://www.tellusa.net/index.php/tellusa/article/view/14524.519

Petoukhov, V., A. Ganopolski, V. Brovkin, M. Claussen, A. Eliseev, C. Kubatzki, and520

S. Rahmstorf, 2000: CLIMBER-2: a climate system model of intermediate complexity.521

Part I: model description and performance for present climate. Clim. Dyn., 16, 1–17.522

Phillips, N., 1954: Energy transformations and meridional circulations associated with simple523

baroclinic waves in a two-level, quasi-geostrophic model. Tellus, 6, 273–286.524

23



Phillips, N., 1956: The general circulation of the atmosphere: a numerical experiment.525

Quart. J. R. Met. Soc., 82, 123–164.526

Phillips, N. A., 1963: Geostrophic motion. Rev. Geophys., 1(2), 123176, doi:10.1029/527

RG001i002p00123.528

Risken, H., 1984: The Fokker-Plank Equation. Methods of Solution and Applications.529

Springer-Verlag, 474 pp.530

Robinson, A. and H. Stommel, 1959: The oceanic thermocline and the associated thermo-531

haline circulation. Tellus, 11, 295–308.532

Selten, F. M., 1995: An efficient description of the dynamics of barotropic flow. J. Atmos.533

Sci., 52, 915–936.534

Selten, F. M., 1997: Baroclinic empirical orthogonal functions as basis functions in an at-535

mospheric model. J. Atmos. Sci., 54, 2100–2114.536

Voss, R., R. Saussen, and U. Cubasch, 1998: Periodically synchronously coupled integrations537

with the atmosphere-ocean general circulation model ECHAM3/LSG. Climate Dyn., 14,538

249–266.539

Welander, P., 1959: An advective model of the ocean thermocline. Tellus, 11, 309–318.540

Zeeman, E. C., 1988: Stability of dynamical systems. Nonlinearity, 1, 115–155.541

24



List of Figures542

1 Mean streamfunction (top row, contour interval 0.01) and streamfunction vari-543

ance (bottom, contour interval 1 · 10−5), from 200000d of data from the toy544

atmosphere (left column), a projected 40-EOF model without SGS parame-545

terization (middle), and a 40-EOF climate model with SGS parameterization546

(right). The streamfunction has been normalized by a2Ω with Ω the angular547

frequency of the earth. 28548

2 Vorticity forcing (bottom row, contour interval 1·10−3, only negative contours549

shown) and corresponding streamfunction forcing (top, contour interval 2 ·550

10−5), centered at (λc, ϕc) = (180◦, 45◦), and nondimenzionalized by length551

scale a and time scale Ω−1. Shown are the total forcing (left column), the552

results one obtains from projection onto the leading 40 EOFs (middle), and553

the result for 90 EOFs (right). 29554

3 Relative error in using quasi-Gaussian FDT (qG-FDT) for predicting the re-555

sponse of the toy atmosphere to anomalous local forcing at twelve different556

longitudes, and projected onto the leading 40 EOFs. Errors have been calcu-557

lated for the response in the mean reduced state ⟨a⟩, the mean SGS error ⟨s⟩,558

the covariance of the SGS error with the reduced state vector ⟨s′a′t⟩, and the559

reduced auto-covariance ⟨a′a′t⟩. The qG-FDT operator is based on 40 EOFs560

as well. 30561

4 For the same twelve cases as discussed in Fig. 3, the relative error between562

the estimates from qG-FDT for the linear operator and forcing of the SGS563

parameterization of a 40-EOF climate model and the à-posteriori result from564

the perturbed atmosphere itself. Also shown is the forcing error in applying565

the reduced qG-FDT (rqG-FDT) as explained in the main text. 31566
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5 The mean streamfunction of the toy atmosphere (upper left panel), its re-567

sponse to an anomalous vorticity forcing at longitude λc = 210◦, projected568

onto 90 EOFs (lower left), the simulation of this response by a 90-EOF climate569

model with unmodified SGS parameterization (upper middle), by a climate570

model with SGS parameterization corrected à-posteriori by investigation of571

the perturbed atmosphere (lower middle), by a climate model with SGS pa-572

rameterization corrected by rqG-FDT (upper right), and the direct estimation573

of the streamfunction response by qG-FDT (lower right). All values have been574

normalized by a2Ω, and the response has been multiplied by a factor 10. 32575

6 As Fig. 5, but now for the zonal wind. Units are m/s. 33576

7 As Fig. 5, but now for the streamfunction variance. All values have been577

normalized by a4Ω2, and the response has been multiplied by a factor 5. 34578

8 Relative error in predicting the first-moment response of the toy atmosphere579

to anomalous local forcing at twelve different longitudes, and projected onto580

the leading 90 EOFs. Models used for the prediction are a 90-EOF low-581

order climate model with SGS parameterization obtained from unperturbed582

reference data (model CM0 in Figs. 5 - 7), a model with SGS parameterization583

adjusted à-posteriori on the basis of perterbed atmosphere data (model CMP584

in Figs. 5 - 7), a model using rqG-FDT for a before-hand prediction of the585

necessary change in the SGS parameterization (model CMF in Figs. 5 - 7),586

and direct application of qG-FDT. 35587

9 As Fig. 8, but now the relative error in predicting the second-moment response588

of the toy atmosphere. Note the logarithmic scale. 36589

10 For the same models as also analyzed in Fig. 8, now however at resolutions,590

i.e. number of basic EOFs, between 20 and 90, the mean first-moment error591

plus/minus the root-mean-square deviation, obtained from all twelve forcing592

cases, respectively. 37593
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11 As Fig. 10, but now for the second-moment errors. 38594
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Fig. 1. Mean streamfunction (top row, contour interval 0.01) and streamfunction variance
(bottom, contour interval 1 · 10−5), from 200000d of data from the toy atmosphere (left
column), a projected 40-EOF model without SGS parameterization (middle), and a 40-EOF
climate model with SGS parameterization (right). The streamfunction has been normalized
by a2Ω with Ω the angular frequency of the earth.
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Fig. 2. Vorticity forcing (bottom row, contour interval 1 · 10−3, only negative contours
shown) and corresponding streamfunction forcing (top, contour interval 2 · 10−5), centered
at (λc, ϕc) = (180◦, 45◦), and nondimenzionalized by length scale a and time scale Ω−1.
Shown are the total forcing (left column), the results one obtains from projection onto the
leading 40 EOFs (middle), and the result for 90 EOFs (right).
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Fig. 3. Relative error in using quasi-Gaussian FDT (qG-FDT) for predicting the response of
the toy atmosphere to anomalous local forcing at twelve different longitudes, and projected
onto the leading 40 EOFs. Errors have been calculated for the response in the mean reduced
state ⟨a⟩, the mean SGS error ⟨s⟩, the covariance of the SGS error with the reduced state
vector ⟨s′a′t⟩, and the reduced auto-covariance ⟨a′a′t⟩. The qG-FDT operator is based on 40
EOFs as well.
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Fig. 4. For the same twelve cases as discussed in Fig. 3, the relative error between the
estimates from qG-FDT for the linear operator and forcing of the SGS parameterization of
a 40-EOF climate model and the à-posteriori result from the perturbed atmosphere itself.
Also shown is the forcing error in applying the reduced qG-FDT (rqG-FDT) as explained in
the main text.
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Fig. 5. The mean streamfunction of the toy atmosphere (upper left panel), its response
to an anomalous vorticity forcing at longitude λc = 210◦, projected onto 90 EOFs (lower
left), the simulation of this response by a 90-EOF climate model with unmodified SGS
parameterization (upper middle), by a climate model with SGS parameterization corrected
à-posteriori by investigation of the perturbed atmosphere (lower middle), by a climate model
with SGS parameterization corrected by rqG-FDT (upper right), and the direct estimation
of the streamfunction response by qG-FDT (lower right). All values have been normalized
by a2Ω, and the response has been multiplied by a factor 10.
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Fig. 6. As Fig. 5, but now for the zonal wind. Units are m/s.
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Fig. 7. As Fig. 5, but now for the streamfunction variance. All values have been normalized
by a4Ω2, and the response has been multiplied by a factor 5.
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Fig. 8. Relative error in predicting the first-moment response of the toy atmosphere to
anomalous local forcing at twelve different longitudes, and projected onto the leading 90
EOFs. Models used for the prediction are a 90-EOF low-order climate model with SGS
parameterization obtained from unperturbed reference data (model CM0 in Figs. 5 - 7), a
model with SGS parameterization adjusted à-posteriori on the basis of perterbed atmosphere
data (model CMP in Figs. 5 - 7), a model using rqG-FDT for a before-hand prediction of
the necessary change in the SGS parameterization (model CMF in Figs. 5 - 7), and direct
application of qG-FDT.
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Fig. 9. As Fig. 8, but now the relative error in predicting the second-moment response of
the toy atmosphere. Note the logarithmic scale.
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Fig. 10. For the same models as also analyzed in Fig. 8, now however at resolutions, i.e.
number of basic EOFs, between 20 and 90, the mean first-moment error plus/minus the
root-mean-square deviation, obtained from all twelve forcing cases, respectively.
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Fig. 11. As Fig. 10, but now for the second-moment errors.
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