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Abstract In this survey, we explain in an informal way recently introduced algebraic
structures on the space of translation invariant, smooth tensor valuations, including
convolution, product, Poincaré duality and Alesker-Fourier transform, and their
relation to kinematic formulae for tensor valuations. We also discuss the connection
to integral geometric formulae for area measures. Furthermore, we describe how the
algebraic viewpoint leads to new intersectional kinematic formulae and substantially
simplified Crofton formulae, for translation invariant tensor valuations.

1 Tensor Valuations

This chapter is based on the general introduction to valuations in Chap. 1, the
description of tensor valuations in Chap. 2, and on the algebraic framework for
scalar valuations provided in Chap. 4. There the relevant background information is
provided, including references to previous work, motivation and hints to applications.
The latter are also discussed in other parts of this volume (see especially Chaps. 10,
12 and 13).

Although we mainly consider translation invariant tensor valuations, we briefly
recall the general definitions and relate them to the notation used in the translation
invariant case and, in particular, in Chap. ?? which is devoted to Crofton formulae
for tensor-valued curvature measures.
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1.1 Examples of Tensor Valuations

For k ∈ {0, . . . , n−1} and K ∈ K n, let Λ0(K, ·), . . . ,Λn−1(K, ·) denote the support
measures associated with K. They are Borel measures on Σ n := Rn × Sn−1 which
are concentrated on the normal bundle nc K of K. Let κn denote the volume of the
unit ball and ωn = nκn the volume of its boundary, the unit sphere. Using the support
measures, we recall from Sect. 2.1 that the Minkowski tensors are defined by

Φ
r,s
k (K) =

1
r!s!

ωn−k

ωn−k+s

∫
Σn

xrus
Λk(K, d(x, u)),

for k ∈ {0, . . . , n− 1} and r, s ∈ N0, and

Φ
r,0
n (K) :=

1
r!

∫
K

xr dx.

In addition, we define Φ
r,s
k := 0 for all other choices of indices. Clearly, the tensor

valuations Φ
0,s
k and Φ

0,0
n , which are obtained by choosing r = 0, are translation

invariant. However, these are not the only translation invariant examples, since e.g.
Φ

1,1
k−1, for k ∈ {1, . . . , n}, is also translation invariant.
Further examples of continuous, isometry covariant tensor valuations are obtained

by multiplying the Minkowski tensors with powers of the metric tensor Q and by
taking linear combinations. As shown by Alesker [1, 2], no other examples exist (see
also Theorem 2.5). In the following, we write

Φ
s
k(K) : = Φ

0,s
k (K) =

1
s!

ωn−k

ωn−k+s

∫
Σn

us
Λk(K, d(x, u))

=

(
n− 1

k

)
1

ωn−k+ss!

∫
Sn−1

us Sk(K, du),

for k ∈ {0, . . . , n− 1}, where we used the kth area measure Sk(K, ·) of K, a Borel
measure on Sn−1 defined by

Sk(K, ·) = nκn−k(n
k

) Λk(K,Rn × ·).

In addition, we define Φ0
n := Vn and Φ s

n := 0 for s > 0. The normalization is such
that Φ0

k = Vk, for k ∈ {0, . . . , n}, where Vk (also denoted by µk) is the kth intrinsic
volume. Clearly, the tensor valuations QiΦ s

k , for k ∈ {0, . . . , n} and i, s ∈ N0, are
continuous, translation invariant, O(n)-covariant, homogeneous of degree k and have
tensor rank 2i + s. If k = n, then necessarily s = 0, and if k = 0, then Φ s

0(K) is
independent of K. Hence, we usually exclude these trivial cases. Apart from these,
Alesker showed that for each fixed k ∈ {1, . . . , n− 1} the valuations

Qi
Φ

s
k , i, s ∈ N0, 2i + s = p, s 6= 1,
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form a basis of the vector space of all continuous, translation invariant, O(n)-covariant
tensor valuations of rank p which are homogenous of degree k. The fact that these
valuations span the corresponding vector space is implied by [1, Prop. 4.9] (and
[2]), the proof is based in particular on basic representation theory. A result of
Weil [16, Thm. 3.5] states that differences of area measure of order k, for any fixed
k ∈ {1, . . . , d − 1}, are dense in the vector space of differences of finite, centered
Borel measures on the unit sphere. From this the asserted linear independence of the
tensor valuations can be inferred.

The situation for general tensor valuations (not necessarily translation invariant)
is more complicated. As explained in Chap. 2, the valuations QiΦ

r,s
k span the corre-

sponding vector space, but there exist linear dependences between these functionals.
Although all linear relations are known and the dimension of the corresponding
vector space (for fixed rank and degree of homogeneity) has been determined, the
situation here is not perfectly understood.

In the following, it will often (but not always) be sufficient to neglect the metric
tensor powers Qi and just consider the tensor valuations Φ s

k , since the metric tensor
commutes nicely with the algebraic operations to be considered.

1.2 Integral Geometric Formulas

Let A(n, k), k ∈ {0, . . . , n}, denote the affine Grassmannian of k-flats in Rn, and let
µk denote the motion invariant measure on A(n, k) normalized as in [12, 13]. The
Crofton formulas to be discussed below relate the integral mean∫

A(n,k)
Φ

r,s
j (K ∩ E) µk(dE)

of the tensor valuation Φ
r,s
j (K ∩ E) of the intersection of K with flats E ∈ A(n, k) to

tensor valuations of K. Guessing from the scalar case, one would expect that only
tensor valuations Φ

r′,s′
n−k+ j(K) are required. It turns out, however, that for general r

the situation is more involved.
The following Crofton formulas for Minkowski tensors were established in [8].

Since Φ
r,s
j (K ∩ E) = 0 if k < j, we only have to consider the cases where k ≥ j.

We start with the basic case k = j, which has a simple form.

Theorem 2.1. For K ∈ K n, r, s ∈ N0 and 0 ≤ k ≤ n− 1,

∫
A(n,k)

Φ
r,s
k (K ∩ E) µk(dE) =

α̃n,k,s Q
s
2 Φ

r,0
n (K), if s is even,

0, if s is odd,

where

α̃n,k,s =
1

(4π)
s
2
( s

2

)
!

Γ
( n

2

)
Γ
( n−k+s

2

)
Γ
( n+s

2

)
Γ
( n−k

2

) .
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This result essentially follows from Fubini’s theorem, combined with a relation
due to McMullen, which connects the Minkowski tensors of K∩E and the Minkowski
tensors of K ∩ E but with respect to the flat E as the ambient space (see (2) for a
precise statement).

The main case j < k is stated in the next theorem.

Theorem 2.2. Let K ∈ K n and k, j, r, s ∈ N0 with 0 ≤ j < k ≤ n− 1. Then∫
A(n,k)

Φ
r,s
j (K ∩ E) µk(dE)

=
b s

2 c

∑
z=0

χ
(1)
n, j,k,s,zQ

z
Φ

r,s−2z
n+ j−k(K) +

b s
2 c−1

∑
z=0

χ
(2)
n, j,k,s,zQ

z

×
s−2z−1

∑
l=0

(
2πlΦ r+s−2z−l,l

n+ j−k−s+2z+l(K)− QΦ
r+s−2z−l,l−2
n+ j−k−s+2z+l(K)

)
,

where the constants χ
(1)
n, j,k,s,z and χ

(2)
n, j,k,s,z are explicitly known.

The constants χ
(1)
n, j,k,s,z and χ

(2)
n, j,k,s,z only depend on the indicated lower indices.

It is remarkable that they are independent of r. Moreover, the right-hand side also
involves other tensor valuations than Φ

r′,s′
n−k+ j(K). For instance, in the special case

where n = 3, k = 2, j = 0, r = 1 and s = 2, Theorem 2.2 yields that∫
A(3,2)

Φ
1,2
0 (K ∩ E) µ2(dE) =

1
3

Φ
1,2
1 (K) +

1
24π

QΦ
1,0
1 (K) +

1
6

Φ
2,1
0 (K).

It can be shown that it is not possible to write Φ
2,1
0 as a linear combination of Φ

1,2
1

and QΦ
1,0
1 , which are the only other Minkoski tensors of rank 3 and homogeneity

degree 2.
The explicit expression obtained for the constants in [8] requires a multiple

(five-fold) summation over products and ratios of binomial coefficients and Gamma
functions. Some progress in simplifying this representation is described in Chap. ??.

Since the tensor valuations on the right-hand side of this Crofton formula are
not linearly independent, the specific representation is not unique. Using the linear
relation due to McMullen, the result can also be expressed in the form∫

A(n,k)
Φ

r,s
j (K ∩ E) µk(dE)

=
b s

2 c

∑
z=0

χ
(1)
n, j,k,s,zQ

z
Φ

r,s−2z
n+ j−k(K) +

b s
2 c−1

∑
z=0

χ
(2)
n, j,k,s,zQ

z

× ∑
l≥s−2z

(
QΦ

r+s−2z−l,l−2
n+ j−k−s+2z+l(K)− 2πlΦ r+s−2z−l,l

n+ j−k−s+2z+l(K)
)

with the same constants as before. From this form, we now deduce the Crofton
formula for the translation invariant tensor valuations Φ s

j . For r = 0, the sum ∑l≥s−2z
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on the right-hand side is non-zero only if l = s − 2z. Therefore, after some index
shift (and discussion of the ‘boundary cases’ z = 0 and z = b s

2c), we obtain

∫
A(n,k)

Φ
s
j(K ∩ E) µ

n
k (dE) =

b s
2 c

∑
z=0

χ
(∗)
n, j,k,s,zQ

z
Φ

s−2z
n+ j−k(K) (1)

for j < k, where

χ
(∗)
n, j,k,s,z = χ

(1)
n, j,k,s,z + χ

(2)
n, j,k,s,z−1 − 2π(s− 2z)χ(2)

n, j,k,s,z.

Since the right-hand side is uniquely determined by the left-hand side and the tensor
valuations on the right-hand side are linearly independent, the constant χ

(∗)
n, j,k,s,z is

uniquely determined. From the expression available for the right-hand side, it seems
to be a formidable task to get a reasonably simple expression for this constant. If
j = k, then Theorem 2.1 shows that (1) remains true if we define χn,k,k,s,b s

2 c := α̃n,k,s
if s is even, and as zero in all other cases. As we will see, the approach of algebraic
integral geometry to (1) will reveal that χ

(∗)
n, j,k,s,z is indeed a surprisingly simple

expression.
To compare the algebraic approach with the one used in [8] and extended to

tensorial curvature measures in Chap. ??, we point out that the result of Theorem
2.2 is complemented by and in fact is based on an intrinsic Crofton formula, where
the tensor valuation Φ

r,s
j (K ∩ E) is replaced by Φ

r,s
j,E(K ∩ E). The latter is the tensor

valuation of the intersection K ∩ E, but calculated with respect to E as the ambient
space. The two tensors are connected by the relation (due to McMullen [10, Theorem
5.1], see also [8])

Φ
r,s
j (K ∩ E) = ∑

m≥0

Q(E⊥)m

(4π)mm!
Φ

r,s−2m
j,E (K ∩ E), (2)

where Q(E⊥) is the metric tensor of the linear subspace orthogonal to the direction
space of E. Note that for s = 0 we get Φ

r,0
j (K ∩ E) = Φ

r,0
j,E(K ∩ E), since the

intrinsic volumes and the suitably normalized curvature measures are independent of
the ambient space. The intrinsic Crofton formula for∫

A(n,k)
Φ

r,s
j,E(K ∩ E) µk(dE)

has the same structure as the extrinsic Crofton formula stated in Theorem 2.2, but the
constants are different. Apart from reducing the number of summations required for
determining the constants, progress in understanding the structure of these (intrinsic
and extrinsic) integral geometric formulas can be made by localizing the Minkowski
tensors. This is the topic of Chapter ??.

Crofton and intersectional kinematic formulae for Minkowski tensors Φ
r,s
j with

s = 0 are just special cases of corresponding (more general) integral geometric
formulas for curvature measures. For example, we have
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A(n,k)

Φ
r,0
j (K ∩ E) µk(dE) = an jk ·Φ r,0

n+ j−k(K) (3)

and ∫
Gn

Φ
r,0
j (K ∩ gM) µ(dg) =

n

∑
k= j

an jk ·Φ r,0
n+ j−k(K)Vk(M), (4)

where Gn is the Euclidean motion group, µ is the suitably normalized Haar measure
and the (simple) constants an jk are known explicitly. Therefore, we focus on the case
s 6= 0 (and r = 0) in the following.

A close connection between Crofton formulae and intersectional kinematic formu-
lae follows from Hadwiger’s general integral geometric theorem (see [13, Theorem
5.1.2]). It states that for any continuous valuation ϕ on the space of convex bodies
and for all K,M ∈ K n, we have∫

Gn

ϕ(K ∩ gM) µ(dg) =
n

∑
k=0

∫
A(n,k)

ϕ(K ∩ E) µk(dE)Vk(M). (5)

Hence, if a Crofton formula for the functional ϕ is available, then an intersectional
kinematic formula is an immediate consequence. This statement includes also tensor-
valued functionals, since (5) can be applied coordinate-wise. In particular, this shows
that (4) can be obtained from (3). In the same way, Theorem 2.2 and the special case
shown in (1) imply kinematic formulas for intersections of convex bodies, one fixed
the other moving. Thus, for instance, we obtain

∫
Gn

Φ
s
j(K ∩ gM) µ(dg) =

b s
2 c

∑
z=0

n

∑
k= j

χ
(∗)
n, j,k,s,z Qz

Φ
s−2z
n+ j−k(K)Vk(M). (6)

These results are related to and in fact inspired general integral geometric formulas
for area measures (see [9]). The starting point is a local version of Hadwiger’s general
integral geometric theorem for measure valued valuations. To state it, let M+(Sn−1)
be the cone of non-negative measures in the vector space M (Sn−1) of finite Borel
measures on the unit sphere. We write K ′ for the set of all non-empty convex bodies
in K n.

Theorem 2.3. Let ϕ : K ′ → M+(Sn−1) be a continuous and additive mapping
with ϕ( /0, ·) := 0 (the zero measure). Then, for K,M ∈ K n and Borel sets A ⊂ Sn−1,∫

Gn

ϕ(K ∩ gM,A) µ(dg) =
n

∑
k=0

[Tn,kϕ(K, ·)](A)Vk(M), (7)

with (the Crofton operator) Tn,k : M+(Sn−1)→M+(Sn−1) given by

Tn,kϕ(K, ·) :=
∫

A(n,k)
ϕ(K ∩ E, ·) µk(dE), k = 0, . . . , n.
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Using the connection to mean section bodies and, for p ∈ {−1, 0, 1, . . . , n}, the
Fourier operators Ip on smooth functions on the unit sphere, the following Crofton
formula for area measures can be proved (see [9, Theorem 3.1]). Here I∗ is the
reflection operator (I∗ f )(u) = f (−u), u ∈ Sn−1, for a smooth function f on the unit
sphere.

Theorem 2.4. Let For 1 ≤ j < q ≤ n and K ∈ K n. Then∫
A(n,q)

S j(K ∩ E, ·) µq(dE) = a(n, j, q)I jIq− jSn+ j−q(−K, ·) (8)

with

a(n, j, q) =
j

2nπ(n+q)/2(n + j − q)
Γ ( q+1

2 )Γ (n− j)

Γ ( n+1
2 )Γ (q− j)

.

The operator Tn, j,q := a(n, j, q)I jIq− jI∗, for 1 ≤ j < q ≤ n, and the identity
operator Tn, j,n act as linear operators on M (Sn−1) and can be used to express (8) in
the form ∫

A(n,q)
S j(K ∩ E, ·) µq(dE) = Tn, j,qSn+ j−q(K, ·). (9)

Combining equations (7) and (9), we obtain a kinematic formula for area measures.
Using again the operator Tn, j,k, it can be stated in the form

∫
Gn

S j(K ∩ gM,A) µ(dg) =
d

∑
k= j

[Tn, j,kSn+ j−k(K, ·)](A)Vk(M),

for j = 1, . . . , n − 1. Since the Fourier operators act as multiplier operators on
spherical harmonics (see [9] for a summary of the main properties of this Fourier
operator and for further references), it follows that Theorem 2.4 can be rewritten in
the form ∫

A(n,q)

∫
Sn−1

fs(u) S j(K ∩ E, du) µq(dE)

= as(n, j, q)
∫
Sn−1

fs(u) Sn+ j−q(K, du), (10)

where fs is a spherical harmonic of degree s and as(s, j, q) = a(n, j, q)bs(n, j, q)
with

bs(n, j, q) = 2q
π

n
Γ

(
s+ j

2

)
Γ

(
s+q− j

2

)
Γ

(
s+n− j

2

)
Γ

(
s+n−q+ j

2

) .
In addition to Crofton and intersectional kinematic formulae, there is another

type of integral geometric formula. Since they involve rotations and Minkowski
sums of convex bodies, it is justified to call them rotation sum formulas. Let SO(n)
denote the group of rotations and let ν denote the Haar probability measure on this
group. A general form of such a formula can again be stated for area measures. Let
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K,M ∈ K n be convex bodies and let α, β ⊂ Sn−1 be Borel sets. Then we have (see
[12, Theorem 4.4.6])∫

SO(n)

∫
Sn−1

1α(u)1β (ρ
−1u) S j(K + ρM, du) ν(dρ)

=
1

ωn

j

∑
k=0

(
j
k

)
Sk(K,α)S j−k(M, β ). (11)

More generally, (11) (applied to coordinate functions) together with the inversion
invariance of the Haar measure ν and basic measure theoretic extension arguments
show that for any continuous function f : Sn−1 × Sn−1 → Syms1 ⊗Syms2 we obtain∫

SO(n)

∫
Sn−1

f (u, ρu) S j(K + ρ
−1M, du) ν(dρ)

=
1

ωn

j

∑
k=0

(
j
k

) ∫
(Sn−1)2

f (u, v)
(
Sk(K, ·)× S j−k(M, ·)

)
(d(u, v)).

If we now define (to simplify constants)

φ
s
k (K) :=

∫
Sn−1

us Sk(K, du), (12)

and choose f (u, v) = us1 ⊗ vs2 , then we get∫
SO(n)

(id⊗s1 ⊗ ρ
⊗s2)φ s1+s2

j (K + ρ
−1M) ν(dρ)

=
∫

SO(n)

∫
Sn−1

us1 ⊗ (ρu)s2 S j(K + ρ
−1M, du) ν(dρ)

=
1

ωn

j

∑
k=0

(
j
k

) ∫
(Sn−1)2

us1 ⊗ vs2
(
Sk(K, ·)× S j−k(M, ·)

)
(d(u, v)), (13)

and hence∫
SO(n)

(id⊗s1 ⊗ ρ
⊗s2)φ s1+s2

j (K + ρ
−1M) ν(dρ) =

1
ωn

j

∑
k=0

(
j
k

)
φ

s1
k (K)⊗ φ

s2
j−k(M).

Up to the different normalization, this is the additive kinematic formula for tensor
valuations stated in [7, Theorem 5]. In particular,

∫
SO(n)

φ
s
j (K + ρM) ν(dρ) =

1
ωn

j

∑
k=0

(
j
k

)
φ

s
k (K)S j−k(M),

where Si(M) := Si(M,Sn−1) = nκn−i
(n

i

)−1Vi(M).
In the following section, we develop basic algebraic structures for tensor valuations

and provide applications to integral geometry. From this approach, we will obtain
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a Crofton formula for the tensor valuations Φ s
k , but also for another set of tensor

valuations, denoted by Ψ s
k , for which the Crofton formula has ‘diagonal form’.

Moreover, we will study more general intersectional kinematic formulae than the one
considered in (6) and describe the connection between intersectional and additive
kinematic formulae. In the course of our analysis, we determine Alesker’s Fourier
operator for spherical valuations, that is, valuations obtained by integration of a
spherical harmonic (or, more generally, any smooth spherical function) against an
area measure.

2 Algebraic Structures on Tensor Valuations

We let Val = Val(Rn) denote the Banach space of translation invariant continuous
valuations on V = Rn, and let Val∞ = Val∞(Rn) be the dense subspace of smooth
valuations, see [5] and Chap. 4 for more information. In this section, we first discuss
the extension of basic operations and transformations from scalar valuations to
tensor-valued valuations. The scalar case is described in Chap. 4.

2.1 Product

Existence and uniqueness of the product of smooth valuations is provided by the
following result.

Proposition 2.5. Let φ1, φ2 ∈ Val∞ be smooth valuations on Rn given by

φi(K) = vol(K + Ai), K ∈ K n,

where A1,A2 ∈ K n are smooth convex bodies with positive Gauss curvature at
every boundary point. Let ∆ : Rn → Rn × Rn be the diagonal embedding. Then

φ1 · φ2(K) := vol(∆K + A1 × A2), K ∈ K n,

extends by continuity and bilinearity to a product on Val∞.

The product is compatible with the degree of a valuation (i.e., if φi has degree ki,
then φ1 · φ2 has degree k1 + k2 if k1 + k2 ≤ n), and more generally with the action of
the group GL(n).

We can extend the product component-wise from scalar-valued smooth valuations
to smooth tensor valued valuations. If Φ1(K) = ∑

m
i=1 φi(K)wi, where w1, . . . ,wm

is a basis of Syms1V , and Φ2(K) = ∑
l
j=1 ψ j(K)u j, where u1, . . . , ul is a basis of

Syms2V , then
(Φ1 ·Φ2) (K) = ∑

i, j
(φi · ψ j)(K)wiu j.
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The dot on the right-hand side is the product of smooth valuations and wiu j ∈
Syms1+s2V denotes the symmetric tensor product of the symmetric tensors wi ∈
Syms1V and u j ∈ Syms2V .

Let us verify that this definition is independent of the chosen bases. Let w′i =
∑ j ci jw j with some invertible matrix (ci j), and let u′i = ∑ j ei ju j with an invertible
matrix (ei j).

If Φ1(K) = ∑i φ ′i (K)w′i = ∑i φi(K)wi, then a comparison of coefficients
yields φ ′i = ∑ c jiφ j, where (ci j) is the matrix inverse. Similarly, from Φ2(K) =

∑i ψ ′j(K)u′i = ∑i ψi(K)ui, then ψ ′i = ∑ e jiψ j. Therefore

∑
i, j
(φ ′i · ψ ′j)w′iu′j = ∑

i, j,b1,b2

(
∑

a1,b1

ca1i
φa1 · e

b1 j
ψb1

)
∑

a2,b2

cia2wa2e jb2ub2

= ∑
a1,a2,b1,b2

(
∑
i, j

ca1icia2eb1 je jb2

)
︸ ︷︷ ︸

=δ
a1
a2 δ

b1
b2

(φa1 · ψb1)wa2 · ub2

= ∑
a,b
(φa · ψa)wa · ub,

which proves the asserted independence of the representation. Writing TVals(V ) for
the vector space of translation invariant continuous valuations on K (V ) with values
in the vector space Syms V of symmetric tensors of rank s over V , and TVals,∞(V )
for the smooth elements of this vector space, we have

Φ1 ·Φ2 ∈ TVals1+s2,∞
k+l (V ), k + l ≤ n,

for Φ1 ∈ TVals1,∞
k (V ), Φ2 ∈ TVals2,∞

l (V ) and k, l ∈ {0, . . . , n}.
A similar description and similar arguments can be given for the operation consid-

ered in the following subsection.

2.2 Convolution

Similarly as for the product of valuations, an explicit definition of the convolution of
two valuations is given only for a suitable subclass of valuations.

Proposition 2.6. Let φ1, φ2 ∈ Val∞ be smooth valuations on Rn given by

φi(K) = vol(K + Ai),

where A1,A2 are smooth convex bodies with positive Gauss curvature at every
boundary point. Then

φ1 ∗ φ2(K) := vol(K + A1 + A2),
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extends by continuity and bilinearity to a product (which is called convolution) on
Val∞.

Written in invariant terms, the convolution is a bilinear map

Valsm(V )⊗ Dens(V ∗)× Valsm(V )⊗ Dens(V ∗)→ Valsm(V )⊗ Dens(V ∗).

It is compatible with the action of the group GL(n) and with the codegree of a
valuation (i.e., if φi has degree ki, then φ1 ∗ φ2 has degree k1 + k2 − n if k1 + k2 ≥ n).

The convolution can be extended component-wise to a convolution on the space
of translation invariant smooth tensor valuations. Hence we have

Φ1 ∗Φ2 ∈ TVals1+s2,∞
k+l−n (V ), k + l ≥ n,

for Φ1 ∈ TVals1,∞
k (V ), Φ2 ∈ TVals2,∞

l (V ) and k, l ∈ {0, . . . , n}. This is analogous to
the definition and computation in the previous subsection.

2.3 Alesker-Fourier Transform

Alesker introduced an operation on smooth valuations, called Alesker-Fourier trans-
form. It is a map

F : Val∞k (Rn)→ Val∞n−k(Rn)

which satisfies
F(φ1 · φ2) = Fφ1 ∗ Fφ2. (14)

On valuations which are smooth and even, it can easily be described in terms
of Klain functions as follows. Let φ ∈ Val∞,+

k (Rn) (the space of smooth and even
valuations which are homogeneous of degree k). Then the restriction of φ to a
k-dimensional subspace E is a multiple Klφ (E) of the volume, and the resulting
function (Klain function) Klφ determines φ . Then

KlFφ (E) = Klφ (E⊥)

for every (n− k)-dimensional subspace E.
As an example, the intrinsic volumes satisfy

F(µk) = µn−k. (15)

The description in the odd case is more involved and better to understand in
invariant terms (i.e., without referring to a Euclidean structure).

Let V be an n-dimensional real vector space. Then

F : Val∞k (V )→ Val∞n−k(V )⊗ Dens(V ∗),
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where Dens denotes the one-dimensional space of densities. This map commutes with
the action of GL(V ) on both sides. Applying it twice (and using the identification
Dens(V ∗)⊗ Dens(V ) ∼= C), it satisfies the Plancherel type formula

F2
φ(K) = φ(−K).

Working again on Euclidean space V = Rn, we can extend the Alesker-Fourier
transform component-wise to a map

F : TVals,∞k → TVals,∞n−k.

It is not an easy task to determine the Fourier transform of valuations other than the
intrinsic volumes.

2.4 Example: Intrinsic Volumes

As an example, let us compute the Alesker product of intrinsic volumes.
Recall Steiner’s formula which states that

vol(K + rB) =
n

∑
i=0

µn−i(K)κiri, r ≥ 0.

Now fix r and s and define the valuations φ1(K) := vol(K + rB) and φ2(K) :=
vol(K + sB). Then

φ1 ∗ φ2(K) = vol(K + rB + sB) = vol(K + (r + s)B) =
n

∑
k=0

µn−k(K)κk(r + s)k,

hence

φ1 ∗ φ2 =
n

∑
i, j=0

µn−i− jκi+ j

(
i + j

i

)
ris j.

On the other hand, since φ1 = ∑
n
i=0 µn−iκiri and φ2 = ∑

n
i=0 µn−iκisi, we obtain

φ1 ∗ φ2 =
n

∑
i, j=0

µn−i ∗ µn− jκiκ jris j.

Now we compare the coefficient of ris j in these equations and get

µn−i− jκi+ j

(
i + j

i

)
= µn−i ∗ µn− jκiκ j.

Writing i instead of n− i and j instead of n− j, we obtain
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µi ∗ µ j =

[
2n− i− j

n− i

]
µi+ j−n, (16)

where we used the flag coefficient[
n
k

]
:=
(

n
k

)
κn

κkκn−k
, k ∈ {0, . . . , n}.

Taking Alesker-Fourier transform on both sides yields

µi · µ j =

[
i + j

i

]
µi+ j. (17)

The computation of convolution and product of tensor valuations follows the
same scheme: first one computes the convolution of tensor valuations, which can
be considered easier. Then one applies the Alesker-Fourier transform to obtain the
product. However, in the tensor-valued case it is much harder to write down the
Alesker-Fourier transform in an explicit way. This step is the technical heart of our
approach.

2.5 Poincaré Duality

The product of smooth translation invariant valuations as well as the convolution
both satisfy a version of Poincaré duality, which moreover are identical up to a sign.

Recall that Val0 ∼= R · χ,Valn ∼= R · vol, where vol is any choice of Lebesgue
measure. We denote by φ0, φn ∈ R the component of φ ∈ Val of degree 0 and n
respectively.

Proposition 2.7. The pairings

Val∞k ×Val∞n−k → R, (φ1, φ2) 7→ (φ1 · φ2)n,

and
Val∞k ×Val∞n−k → R, (φ1, φ2) 7→ (φ1 ∗ φ2)0,

are perfect, that is, the induced maps

pdm, pdc : Val∞k → Val∞,∗
n−k

are injective with dense image. Moreover,

pdc =

{
pdm on Val+k .

−pdm on Val−k .

To illustrate this proposition and to highlight the difference between the two
pairings, let us compute them on an easy example. Let φi(K) := vol(K + Ai),
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where Ai, i ∈ {1, 2}, are smooth convex bodies with positive Gauss curvature. Then
φ1 ∗ φ2(K) = vol(K + A1 + A2), and hence (φ1 ∗ φ2)0 = vol(A1 + A2).

On the other hand, φ1 · φ2(K) = vol2n(∆K + A1 × A2). Using Fubini’s theorem,
one rewrites this as

φ1 · φ2(K) =
∫
Rn

φ2((x− A1) ∩ K) dx.

Taking K a large ball reveals that (φ1 ·φ2)n = φ2(−A1) = vol(A2−A1). If A1 = −A1,
then φ1 is even and both pairings agree indeed.

2.6 Explicit Computation in the O(n)-Equivariant Case

In this subsection, we outline the explicit computation of product, convolution and
Alesker-Fourier transform in the O(n)-equivariant case. Depending on the situation,
we will either use the basis consisting of the tensor valuations QiΦ s−2i

k or the basis
consisting of the tensor valuations QiΨ s−2i

k . The latter are defined in the following
proposition.

Proposition 2.8. The following statements hold.

(i) For 0 ≤ k < n and s 6= 1, define

Ψ
s

k := Φ
s
k +

b s
2 c

∑
j=1

(−1) jΓ ( n−k+s
2 )Γ ( n

2 + s− 1− j)

(4π) j j!Γ ( n−k+s
2 − j)Γ ( n

2 + s− 1)
Q j

Φ
s−2 j
k

and let Ψ 0
n := Φ0

n . Then Ψ s
k is the trace free part of Φ s

k . In particular, Ψ s
k ≡ Φ s

k
mod Q.

(ii) For 0 ≤ k < n and s 6= 1, Φ s
k can be written in terms of Ψ s′

k as

Φ
s
k = Ψ

s
k +

b s
2 c

∑
j=1

Γ
( n−k+s

2

)
Γ ( n

2 + s− 2 j)

(4π) j j!Γ ( n−k+s
2 − j)Γ ( n

2 + s− j)
Q j

Ψ
s−2 j

k .

The inversion which is needed to derive (ii) from (i) can be accomplished with the
help of Zeilberger’s algorithm.

The first and easier step is to compute the convolution of two tensor valuations.
Since Φ s

k is smooth (i.e., each component is a smooth valuation), we may write

Φ
s
k(K) =

∫
nc(K)

ωk,s,

where ωk,s is a smooth (n − 1)-form on the sphere bundle Rn × Sn−1 with values
in Syms Rn. Next, for valuations represented by differential forms, there is an easy
formula for the convolution, which involves only some linear and bilinear operations
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(a kind of Hodge star and a wedge product). The resulting formula is that for k, l ≤ n
with k + l ≥ n and s1, s2 6= 1, we have

Φ
s1
k ∗Φ

s2
l =

ωs1+s2+2n−k−l

ωs1+n−kωs2+n−l

(n− k)(n− l)
2n− k − l

·

·
(

2n− k − l
n− k

)(
s1 + s2

s1

)
(s1 − 1)(s2 − 1)

1− s1 − s2
Φ

s1+s2
k+l−n,

or, using the normalization (12) which is more convenient for this purpose,

φ
s1
k ∗ φ

s2
l = n

(k+l
n

)(k+l
k

) (s1 − 1)(s2 − 1)
1− s1 − s2

φ
s1+s2
k+l−n.

The computation of the Alesker-Fourier transform of tensor valuations is the main
step and will be explained in the next subsection. For 0 ≤ k ≤ n and s 6= 1, the result
is

F(Ψ s
k ) = is Ψ

s
n−k,

F(Φ s
k) = is

b s
2 c

∑
j=0

(−1) j

(4π) j j!
Q j

Φ
s−2 j
n−k .

Finally, the product of two tensor valuations can be computed once the convolution
and the Alesker-Fourier transform are known, see (14). The result is a bit more
involved than the formulas for convolution and Alesker-Fourier transform. The
reason is that the formula for convolution is best described in terms of the tensor
valuations Φ s

k , while the description of the Alesker-Fourier transform has a simpler
expression for the Ψ s

k .
After some algebraic manipulations (which make use of Zeilberger’s algorithm),

we arrive at

Φ
s1
k ·Φ

s2
l =

kl
k + l

(
k + l

k

) b s1+s2
2 c

∑
a=0

2a6=s1+s2−1

1
(4π)aa!

(
a

∑
m=0

min{m,b s1
2 c}

∑
i=max{0,m−b s2

2 c}

(−1)a−m
(

a
m

)(
m
i

)
ωs1+s2−2m+k+l

ωs1−2i+kωs2−2m+2i+l

(
s1 + s2 − 2m

s1 − 2i

)
·

· (s1 − 2i− 1)(s2 − 2m + 2i− 1)
1− s1 − s2 + 2m

)
Qa

Φ
s1+s2−2a
k+l . (18)

Here 0 ≤ k, l with k+l ≤ n and s1, s2 6= 1. It seems that there is no closed expression
for the inner sum.
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2.7 Tensor Valuations Versus Scalar-Valued Valuations

The interplay between tensor valuations and scalar valued valuations will be essential
in the computation of the Alesker-Fourier transform. We therefore explain this now
is some more detail.

We first need some facts from representation theory. It is well-known that equiva-
lence classes of complex irreducible (finite-dimensional) representations of SO(n)
are indexed by their highest weights. The possible highest weights are tuples
(λ1, λ2, . . . , λb n

2 c) of integers such that

1. λ1 ≥ λ2 ≥ . . . ≥ λb n
2 c ≥ 0 if n is odd,

2. λ1 ≥ λ2 ≥ . . . ≥ |λ n
2
| ≥ 0 if n is even.

Given λ = (λ1, . . . , λb n
2 c) satisfying this condition, we will denote the corre-

sponding equivalence class of representations by Γλ .
The decomposition of the SO(n)-module Valk has recently been obtained in [3].

Theorem 2.9 ([3]). There is an isomorphism of SO(n)-modules

Valk ∼=
⊕

λ

Γλ ,

where λ ranges over all highest weights such that |λ2| ≤ 2, |λi| 6= 1 for all i and
λi = 0 for i > min{k, n−k}. In particular, these decompositions are multiplicity-free.

Let Γ be an irreducible representation of SO(n) and Γ ∗ its dual. The space of k-
homogeneous SO(n)-equivariant Γ -valued valuations (i.e., maps Φ : K → Γ such
that Φ(gK) = gΦ(K) for all g ∈ SO(n)) is (Valk⊗Γ )SO(n) = HomSO(n)(Valk,Γ ∗).
By Theorem (2.9), Γ ∗ appears in the decomposition of Valk precisely if Γ ap-
pears, and in this case the multiplicity is 1. By Schur’s lemma it follows that
dim(Valk⊗Γ )SO(n) = 1 in this case.

Let us construct the (unique up to scale) equivariant Γ -valued valuation explicitly.
Denote by Valk ∩Γ the Γ -isotypical component, which is isomorphic to Γ since Valk
is multiplicity free.

Let φ1, . . . , φm be a basis of Valk ∩Γ . These elements play two different roles:
first we can look at them as valuations, i.e., elements of Valk. Second, we may think
of φ1, . . . , φm as basis of the irreducible representation Γ . The action of SO(n) on
this basis is given by

gφi = ∑
j

c j
i (g)φ j,

where (c j
i (g))i, j is a matrix depending on g. The map g 7→ (c j

i (g))i, j is a homomor-
phism of Lie groups SO(n)→ GL(m).

Let φ ∗1 , . . . , φ ∗m be the dual basis of Γ ∗. Then

gφ
∗
i = ∑

j
(c j

i (g))
−t

φ j = ∑
j

ci
j(g
−1)φ j,
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Using the double role played by the φi mentioned above, we set

Φ(K) := ∑
i

φi(K)φ ∗i ∈ Γ
∗. (19)

We claim that Φ is O(n)-equivariant valuation with values in Γ ∗. Indeed, we
compute

Φ(gK) = ∑
i

φi(gK)φ ∗i

= ∑
i
(g−1

φi)(K)φ ∗i

= ∑
i, j

c j
i (g
−1)φ j(K)φ ∗i

= ∑
j

φ j(K)∑
i

c j
i (g
−1)φ ∗i

= ∑
j

φ j(K)gφ
∗
j

= g(Φ(K)).

Conversely, start with an equivariant Γ ∗-valued continuous translation invariant
valuation Φ of degree k. Let w1, . . . ,wm be a basis of Γ ∗. Then we may look at the
components of Φ , i.e., we decompose

Φ(K) = ∑
i

φi(K)wi

with φi ∈ Valk. Let the action of SO(n) on Γ ∗ be given by

gwi = ∑
j

a j
i (g)w j.

We have

Φ(gK) = ∑
i

φi(gK)wi = ∑
i
(g−1

φi)(K)wi

g(Φ(K)) = ∑
j

φ j(K)gw j = ∑
i, j

φ j(K)ai
j(g)wi.

Comparing coefficient yields g−1φi = ∑ ai
j(g)φ j, or

gφi = ∑ ai
j(g
−1)φ j.

This shows that the subspace of Valk spanned by φ1, . . . , φm is isomorphic to Γ .
In summary, we have shown the following fact.

Each SO(n)-irreducible representation Γ appearing in the decomposition of Valk
corresponds to the (unique up to scale) Γ ∗-valued continuous translation invari-
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ant valuation Φ from (19). Conversely, the coefficients of a Γ ∗-valued continuous
translation invariant valuation span a subspace of Valk isomorphic to Γ .

Let us now discuss the special case of symmetric tensor valuations. The SO(n)-
representation space Syms is (in general) not irreducible. Indeed, the trace map
tr : Syms → Syms−2 commutes with SO(n), hence its kernel is an invariant subspace.
This subspace turns out to be the irreducible representation Γ(s,0,...,0) and can be
identified with the space H n

s of harmonic polynomials of degree s. Recall that a
homogeneous polynomial p of degree s on Rn is called harmonic if ∆ p = 0, where ∆

is the Laplace operator. We refer to [12] for more information on spherical harmonics.
Since the trace map is onto, we get the following decomposition.

Syms ∼=
⊕

j

H n
s−2 j.

Instead of studying Syms-valued valuations, we can therefore study H n
s -valued

valuations. For s 6= 1 and 1 ≤ k ≤ n − 1, the representation H n
s appears in

Valk with multiplicity 1. Since H n
s is self-dual, the construction sketched above

yields in the special case Γ := H n
s a unique (up to scale) H n

s -valued equivariant
continuous translation invariant valuation of degree k, which was denoted by Ψk,s in
the introduction.

2.8 The Alesker-Fourier Transform

As we have seen in the previous subsection, the study of (symmetric) tensor valua-
tions and the study of the H s-isotypical component of Valk is equivalent. For the
computation of the Alesker-Fourier transform, it is easier to work with scalar-valued
valuations. Let us first define some particular class of valuations, called spherical
valuations.

Let f be a smooth function on Sn−1. For k ∈ {0, . . . , n−1}, we define a valuation
µk, f ∈ Valk(Rn) by

µk, f (K) :=
(

n− 1
k

)
1

ωn−k

∫
Sn−1

f (y) Sk(K, dy).

Such valuations are called spherical (see also the recent preprint [14]). By Subsection
2.7, the components of an SO(n)-equivariant tensor valuation are spherical. Since
the Alesker-Fourier transform of such a tensor valuation is defined component-wise,
it suffices to compute the Alesker-Fourier transform of spherical valuations.

In this subsection, we sketch this (rather involved) computation. The first and easy
observation is that, by Schur’s lemma, there exist constants cn,k,s ∈ C which only
depend on n, k, s such that

F(µk, f ) = cn,k,sµn−k, f , f ∈H n
s . (20)
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These multipliers of the Alesker-Fourier transform can be computed in the even case
(i.e., s is even) by looking at Klain functions. In the odd case, there seems to be
no easy way to compute them. We adapt ideas from [11], where the multipliers of
the α-cosine transform was computed, to our situation. The main point is that the
Alesker-Fourier transform is not only an SO(n)-equivariant operator, but (if written
in intrinsic terms) is equivariant under the larger group GL(n). Using elements from
the Lie algebra gl(n) allows us to pass from one irreducible SO(n)-representation to
another and to obtain a recursive formula for the constants cn,k,s, which states that

cn,k,s+2

cn,k,s
= − k + s

n− k + s
. (21)

This step requires extensive computations using differential forms, and we refer
to [7] for the details.

Next, one can use induction over s, k, n to prove that

cn,k,s = is
Γ
( n−k

2

)
Γ
( s+k

2

)
Γ
( k

2

)
Γ
( s+n−k

2

) .
More precisely, in the even case, we may use as induction start the case s = 0, which
corresponds to intrinsic volumes, whose Alesker-Fourier transform is known by (15).

In the odd case, we use as induction start s = 3. In order to compute cn,k,3, we use
the Crofton formula from [8] to compute the quotients cn,k+1,3

cn,k,3
. This fixes all constants

up to a scaling which may depend on n. More precisely,

cn,k,s = εnis
Γ
( n−k

2

)
Γ
( s+k

2

)
Γ
( k

2

)
Γ
( s+n−k

2

) , (22)

where εn depends only on n. Using functorial properties of the Alesker-Fourier
transform, we find that εn is independent of n. In the two-dimensional case, however,
there is a very explicit description of the Alesker-Fourier transform which finally
allows us to deduce that εn = 1 for all n ≥ 2.

An alternative approach to determining the constants cn,k,s is to prove indepen-
dently a Crofton formula for the tensor valuations Ψ s

k , via the Crofton formula for
area measures, as described before (see also Remark 4.6 in [9]). This point of view
suggests to relate the Fourier operator for spherical valuations to the Fourier operators
for spherical functions via the relation

F(µ̄k, f ) = (2π)−
d
2 µ̄d−k,Ik f ,

for f ∈ C∞(Sd−1), where

µ̄k, f (K) =

(
d − 1

k

)
(2π)

k
2

∫
Sd−1

f (u) Sk(K, du),

is just a renormalization of µk, f (K).
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3 Kinematic Formulas

In this section, we first describe the interplay between algebraic structures and
kinematic formulas in general (i.e., for tensor valuations which are equivariant under
a group G acting transitively on the unit sphere). Then we will specialize to the
O(n)-covariant case.

3.1 Relation Between Kinematic Formulas and Algebraic
Structures

Let G be a subgroup of O(n) which acts transitively on the unit sphere. Then the space
TValG(V ) of G-covariant, translation invariant continuous tensor-valued valuations
is finite-dimensional. Next we define two integral geometric operators. We start with
the one for rotation sum formulas.

Let Φ ∈ TVals1+s2,G(V ). We define a bivaluation with values in the tensor product
Syms1 V ⊗ Syms2 V by

aG
s1,s2

(Φ)(K,L) :=
∫

G
(id⊗s1 ⊗ g⊗s2)Φ(K + g−1L) ν(dg)

for K,L ∈ K (V ), where G is endowed with the Haar probability measure ν (see
[15]). (This notation is consistent with the case V = Rn and G = O(n).)

Let Φ1, . . . ,Φm1 be a basis of TVals1,G(V ), and let Ψ1, . . . ,Ψm2 be a basis of
TVals2,G(V ). Arguing as in the classical Hadwiger argument (cf. [15, Theorem 4.3]),
it can be seen that there are constants cΦ

i j such that

aG
s1,s2

(Φ)(K,L) = ∑
i, j

cΦ
i j Φi(K)⊗Ψj(L)

for K,L ∈ K (V ). The additive kinematic operator is the map

aG
s1,s2

: TVals1+s2,G(V )→ TVals1,G(V )⊗ TVals2,G(V )

Φ 7→∑
i, j

cΦ
i j Φi ⊗Ψj,

which is independent of the choice of the bases.
In view of intersectional kinematic formulas, we define a bivaluation with values

in Syms1 V ⊗ Syms2 V by

kG
s1,s2

(Φ)(K,L) :=
∫

Ḡ
(id⊗s1 ⊗ g⊗s2)Φ(K ∩ ḡ−1L) µ(dḡ),

for K,L ∈ K (V ), where Ḡ is the group generated by G and the translation group,
endowed with the product measure µ of ν and a translation invariant Haar measure
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on V , and where g is the rotational part of ḡ. (Again this notation is consistent
with the special case where Ḡ = Gn is the motion group, G = O(n) and µ is the
motion invariant Haar measure with its usual normalization as a ‘product measure’.)
Choosing bases and arguing as above, we find

kG
s1,s2

(Φ)(K,L) = ∑
i, j

dΦ
i j Φi(K)⊗Ψj(L) (23)

for K,L ∈ K (V ). Of course, the constants dΦ
i j depend on the chosen bases and on

Φ , but the operator, called intersectional kinematic operator,

kG
s1,s2

: TVals1+s2,G(V )→ TVals1,G(V )⊗ TVals2,G(V )

Φ 7→∑
i, j

dΦ
i j Φi ⊗Ψj,

is independent of these choices.
In the following, we explain the connection between these operators and then

provide explicit examples.
Let V be a Euclidean vector space with scalar product 〈· , ·〉. For s ≤ r we define

the contraction map by

contr : V⊗s ×V⊗r → V⊗(r−s),

(v1 ⊗ . . .⊗ vs,w1 ⊗ . . .⊗ wr) 7→ 〈v1,w1〉〈v2,w2〉 . . . 〈vs,ws〉ws+1 ⊗ · · · ⊗ wr,

and linearity. This map restricts to a map contr : Syms V × Symr V → Symr−s V . In
particular, if r = s, the map Syms V × Syms V → R is the usual scalar product on
Syms V , which will also be denoted by 〈· , ·〉.

The trace map tr : Syms V → Syms−2 V is defined by restriction of the map
V⊗s → V⊗(s−2), v1 ⊗ . . .⊗ vs 7→ 〈v1, v2〉v3 ⊗ . . .⊗ vs, for s ≥ 2.

The scalar product on Syms V induces an isomorphism qs : Syms V → (Syms V )∗

and we set

pds
c : TVals,∞ = Val∞⊗Syms V

pdc ⊗qs

−−−−→ (Val∞)∗ ⊗ (Syms V )∗ = (TVals,∞)∗,

pds
m : TVals,∞ = Val∞⊗Syms V

pdm ⊗qs

−−−−→ (Val∞)∗ ⊗ (Syms V )∗ = (TVals,∞)∗.

From Proposition 2.7 it follows easily that

pds
m = (−1)s pds

c . (24)

Finally, we write

m, c : TVals1,∞(V )⊗ TVals2,∞(V )→ TVals1+s2,∞(V )

for the maps corresponding to the product and the convolution.
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Theorem 2.10. Let G be a compact subgroup of O(n) acting transitively on the unit
sphere. Then the diagram

TVals1+s2,G
aG

s1,s2 //

pd
s1+s2
c
��

TVals1,G⊗TVals2,G

pd
s1
c ⊗ pd

s2
c
��(

TVals1+s2,G
)∗ c∗G //

F∗
��

(
TVals1,G

)∗ ⊗ (TVals2,G
)∗

F∗⊗F∗
��(

TVals1+s2,G
)∗ m∗G //

(
TVals1,G

)∗ ⊗ (TVals2,G
)∗

TVals1+s2,G
kG

s1 ,s2 //

pd
s1+s2
m

OO

TVals1,G⊗TVals2,G

pd
s1
m ⊗ pd

s2
m

OO

commutes and encodes the relations between product, convolution, Alesker-Fourier
transform, intersectional and additive kinematic formulas.

This diagram allows us to express the additive kinematic operator in terms of the
intersectional kinematic operator, and vice versa, with the Fourier transform as the
link between these operators.

Corollary 2.11. Intersectional and additive kinematic formulas are related by the
Alesker-Fourier transform in the following way:

aG =
(
F−1 ⊗ F−1) ◦ kG ◦ F,

or equivalently
kG = (F⊗ F) ◦ aG ◦ F−1.

This follows by looking at the outer square in Theorem 2.11, by carefully taking
into account the signs coming from (24).

3.2 Some Explicit Examples of Kinematic Formulas

We start with a description of a Crofton formula for tensor valuations. Combining
the connection between Crofton formulae and the product of valuations (see [4, (2)
and (16)]) and the explicit formulas for the product of tensor valuations, we obtain
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A(n,n−l)

Φ
s
k(K ∩ E) µn−l(dE) =

[
n
l

]−1 (
Φ

s
k ·Φ0

l
)
(K)

=

[
n
l

]−1(k + l
k

)
kl

k + l

b s
2c

∑
a=0,2a 6=s−1

1
(4π)aa!

×
a

∑
m=0

(−1)a−m
(

a
m

)
ωs−2m+k+l

ωs−2m+kωl
Qa

Φ
s−2a
k+l .

After simplification of the inner sum by means of Zeilberger’s algorithm, we
obtain the Crofton formula in the Φ-basis.

Theorem 2.12. If k, l ≥ 0 with k + l ≤ n and s ∈ N0, then

∫
A(n,n−l)

Φ
s
k(K ∩ E) µn−l(dE) =

[
n
l

]−1(k + l
k

)
kl

2(k + l)
1

Γ
( k+l+s

2

)
×
b s

2 c

∑
j=0

Γ
( l

2 + j
)

Γ
( k+s

2 − j
)

(4π) j j!
Q j

Φ
s−2 j
k+l (K).

Comparing the trace-free part of this formula (or by inversion), we deduce the
Crofton formula for the Ψ -basis, in which the result has a particularly convenient
form.

Corollary 2.13. If k, l ≥ 0 and k + l ≤ n, then

∫
A(n,n−l)

Ψ
s

k (K ∩ E) µn−l(dE) =
ωs+k+l

ωs+kωl

(
k + l

k

)
kl

k + l

[
n
l

]−1

Ψ
s

k+l(K).

Alternatively, as observed in [9], Corollary 2.14 can be deduced from (10), and
then Theorem 2.13 can be obtained as a consequence.

Thus, having now a convenient Crofton formula for tensor valuations, we deduce
from Hadwiger’s integral geometric theorem an intersectional kinematic formula in
the Ψ -basis.

Theorem 2.14. Let K,M ∈ K n and j ∈ {0, . . . , n}. Then

∫
Gn

Ψ
s
j (K ∩ gM) µ(dg) =

n

∑
k= j

ωs+k

ωs+ jκk− j

(
k − 1
j − 1

)[
n

k − j

]−1

Ψ
s

k (K)Vn−k+ j(M).

Let us now prove some more refined intersectional kinematic formulas. In princi-
ple, we could also use Corollary 2.12 to find the intersectional kinematic formulas
once we know the additive formulas. The problem is that (13) only gives us the value
of as1,s2 on the basis element φ

s1+s2
j , but not on multiples of such basis elements with

powers of the metric tensors. However, such terms appear naturally in the Fourier
transform.

We therefore use Theorem 2.11, more precisely the lower square in the diagram.
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In (18) we have computed the product of two tensor valuations. For fixed ranks
s1, s2, the formula simplifies and can be evaluated in a closed form. For instance, if
1 ≤ k, l with k + l ≤ n, then

Φ
3
k ·Φ3

l =
(k + 1)(l + 1)Γ

( k+l+1
2

)
π

5
2 (k + l + 4)(k + l + 2)(k + l)Γ

( k
2

)
Γ
( l

2

) ·
·
(
−32Φ

6
k+lπ

3 + 8QΦ
4
k+lπ

2 − Q2
Φ

2
k+lπ +

1
12

Q3
Φ

0
k+l

)
. (25)

Let us next work out the vertical arrows in the diagram of Theorem 2.11, i.e. the
Poincaré duality pdm. Again, this is a computation involving differential forms. The
result is

〈pds
m(Φ

s
k),Φ

s
n−k〉 = (−1)s 1− s

πss!2

(
n
k

)
k(n− k)

4
Γ
( k+s

2

)
Γ
( n−k+s

2

)
Γ
( n

2 + 1
) . (26)

We now explain how to compute the intersectional kinematic formula kO(n)
3,3 with

this knowledge.
It is clear that there is a formula of the form

kO(n)
3,3 (Φ6

i ) = ∑
k+l=n+i

an,i,kΦ
3
k ⊗Φ

3
l

with some constants an,i,k which remain to be determined. Fix k, l with k + l = n + i.
Using (26), we find

〈pd3
m Φ

3
k ,Φ

3
n−k〉 =

1
72π3

(
n
k

)
k(n− k)

Γ
( k+3

2

)
Γ
( n−k+3

2

)
Γ
( n

2 + 1
) ,

〈pd3
m Φ

3
l ,Φ

3
n−l〉 =

1
72π3

(
n
l

)
l(n− l)

Γ
( l+3

2

)
Γ
( n−l+3

2

)
Γ
( n

2 + 1
)

and therefore

〈(pd3
m⊗ pd3

m) ◦ kO(n)
3,3 (Φ6

i ),Φ
3
n−k ⊗Φ

3
n−l〉

= an,i,k
1

72π3

(
n
k

)
k(n−k)

Γ
( k+3

2

)
Γ
( n−k+3

2

)
Γ
( n

2 + 1
) 1

72π3

(
n
l

)
l(n−l)

Γ
( l+3

2

)
Γ
( n−l+3

2

)
Γ
( n

2 + 1
) .

On the other hand, by (25) and (26),
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〈m∗ ◦ pd6
m(Φ

6
i ),Φ

3
n−k ⊗Φ

3
n−l〉 = 〈pd6

m(Φ
6
i ),Φ

3
n−k ·Φ3

n−l〉

=
(n− k + 1)(n− l + 1)Γ

( n−i+1
2

)
π

5
2 (n− i + 4)(n− i + 2)(n− i)Γ

( n−l
2

)
Γ
( n−k

2

) ·
·
〈

pd6
m(Φ

6
i ),−32Φ

6
n−iπ

3 + 8QΦ
4
n−iπ

2 − Q2
Φ

2
n−iπ +

1
12

Q3
Φ

0
n−i

〉
=

1
207360

(k − n− 1)(i− k − 1)Γ
( n+1

2

)
(i + 1)(i− 1)(i− 3)

π5Γ
( i+1

2

)
Γ
( n−k

2

)
Γ
( k−i

2

) .

From this, the explicit value of an,i,k given in the theorem follows. Comparing these
expressions, we find that

an,i,k =
(i + 1)(i− 1)(i− 3)
40Γ

( n+1
2

)
Γ
( i+1

2

) Γ
( k

2

)
Γ
( l

2

)
(k + 1)(l + 1)

The same technique can be applied to all bidegrees, but it seems hard to find a
closed formula which is valid simultaneously in all cases.
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